factor/extra/project-euler/064/064.factor

177 lines
4.0 KiB
Factor
Raw Permalink Normal View History

USING: accessors arrays classes.tuple io kernel locals math
math.functions math.ranges prettyprint project-euler.common
sequences ;
IN: project-euler.064
! http://projecteuler.net/index.php?section=problems&id=64
! DESCRIPTION
! -----------
! All square roots are periodic when written as continued
! fractions and can be written in the form:
! √N=a0+1/(a1+1/(a2+1/a3+...))
! For example, let us consider √23:
! √23=4+√(23)4=4+1/(1/(√234)=4+1/(1+((√233)/7)
! If we continue we would get the following expansion:
! √23=4+1/(1+1/(3+1/(1+1/(8+...))))
! The process can be summarised as follows:
! a0=4, 1/(√234) = (√23+4)/7 = 1+(√233)/7
! a1=1, 7/(√233) = 7*(√23+3)/14 = 3+(√233)/2
! a2=3, 2/(√233) = 2*(√23+3)/14 = 1+(√234)/7
! a3=1, 7/(√234) = 7*(√23+4)/7 = 8+√234
! a4=8, 1/(√234) = (√23+4)/7 = 1+(√233)/7
! a5=1, 7/(√233) = 7*(√23+3)/14 = 3+(√233)/2
! a6=3, 2/(√233) = 2*(√23+3)/14 = 1+(√234)/7
! a7=1, 7/(√234) = 7*(√23+4)/7 = 8+√234
! It can be seen that the sequence is repeating. For
! conciseness, we use the notation √23=[4;(1,3,1,8)], to
! indicate that the block (1,3,1,8) repeats indefinitely.
! The first ten continued fraction representations of
! (irrational) square roots are:
! √2=[1;(2)] , period=1
! √3=[1;(1,2)], period=2
! √5=[2;(4)], period=1
! √6=[2;(2,4)], period=2
! √7=[2;(1,1,1,4)], period=4
! √8=[2;(1,4)], period=2
! √10=[3;(6)], period=1
! √11=[3;(3,6)], period=2
! √12=[3;(2,6)], period=2
! √13=[3;(1,1,1,1,6)], period=5
! Exactly four continued fractions, for N <= 13, have an odd period.
! How many continued fractions for N <= 10000 have an odd period?
<PRIVATE
TUPLE: cont-frac
{ whole integer }
{ num-const integer }
{ denom integer } ;
C: <cont-frac> cont-frac
: deep-copy ( cont-frac -- cont-frac cont-frac )
dup tuple>array rest cont-frac slots>tuple ;
: create-cont-frac ( n -- n cont-frac )
dup sqrt >fixnum dup 1 <cont-frac> ;
: step ( n cont-frac -- n cont-frac )
swap dup
! Store n
[let :> n
! Extract the constant
swap dup num-const>>
:> num-const
! Find the new denominator
num-const 2 ^ n swap -
:> exp-denom
! Find the fraction in lowest terms
dup denom>>
exp-denom simple-gcd
exp-denom swap /
:> new-denom
! Find the new whole number
num-const n sqrt + new-denom / >fixnum
:> new-whole
! Find the new num-const
num-const new-denom /
new-whole swap -
new-denom *
:> new-num-const
! Finally, update the continuing fraction
drop new-whole new-num-const new-denom <cont-frac>
] ;
:: loop ( c l n cf -- c l n cf )
n cf step :> new-cf drop
c 1 + l n new-cf
l new-cf = [ loop ] unless ;
: find-period ( n -- period )
0 swap
create-cont-frac
step
deep-copy -rot
loop
drop drop drop ;
: try-all ( -- n )
2 10000 [a,b]
[ perfect-square? not ] filter
[ find-period ] map
[ odd? ] filter
length ;
PRIVATE>
: euler064a ( -- n ) try-all ;
<PRIVATE
! (√n + a)/b
TUPLE: cfrac n a b ;
C: <cfrac> cfrac
: >cfrac< ( fr -- n a b )
[ n>> ] [ a>> ] [ b>> ] tri ;
! (√n + a) / b = 1 / (k + (√n + a') / b')
!
! b / (√n + a) = b (√n - a) / (n - a^2) = (√n - a) / ((n - a^2) / b)
:: reciprocal ( fr -- fr' )
fr >cfrac< :> ( n a b )
n
a neg
n a sq - b /
<cfrac> ;
:: split ( fr -- k fr' )
fr >cfrac< :> ( n a b )
n sqrt a + b / >integer
dup n swap
b * a swap -
b
<cfrac> ;
: pure ( n -- fr )
0 1 <cfrac> ;
: next ( fr -- fr' )
reciprocal split nip ;
:: period ( n -- period )
n sqrt >integer sq n = [ 0 ] [
n pure split nip :> start
1 start next
[ dup start = not ]
[ next [ 1 + ] dip ]
while drop
] if ;
PRIVATE>
: euler064b ( -- ct )
10000 [1,b] [ period odd? ] count ;
SOLUTION: euler064b