This article covers the interactive development environment for the Factor programming language, whose homepage is located at \texttt{http://factor.sf.net}.
Factor supports interactive development in a live environment. Instead of working with
static executable files and restarting your application after each change, you can
incrementally make changes to your application and test them immediately. If you
notice an undesirable behavior, Factor's powerful reflection features will aid in
pinpointing the error.
\section{System organization}
\subsection{The listener}
Factor is an \emph{image-based environment}. When you compiled Factor, you also generated a file named \texttt{factor.image}. I will have more to say about images later, but for now it suffices to understand that to start Factor, you must pass the image file name on the command line:
An \texttt{\textbf{ok}} prompt is printed after the initial banner, indicating the listener is ready to execute Factor phrases. The listener is a piece of Factor code, like any other; however, it helps to think of it as the primary interface to the Factor system. The listener reads Factor code and executes it. You can try the classical first program:
\begin{alltt}
\textbf{ok} "Hello, world." print
\textbf{Hello, world.}
\end{alltt}
Multi-line phrases are supported; if there are unclosed brackets, the listener outputs \texttt{...} instead of the \texttt{ok} prompt, and the entire phrase is executed once all brackets are closed:
\begin{alltt}
\textbf{ok} [ 1 2 3 ] [
\textbf{...} .
\textbf{...} ] each
\textbf{1
2
3}
\end{alltt}
The listener knows when to print a continuation prompt by looking at the height of the
stack. Parsing words such as \texttt{[} and \texttt{:} leave elements on the parser
stack; these elements are popped by \texttt{]} and \texttt{;}.
\subsection{Source files}
While it is possible to do all development in the listener and save your work in images, it is far more convenient to work with source files, at least until an in-image structure editor is developed.
By convention, Factor source files are saved with the \texttt{.factor} filename extension. They can be loaded into the image as follows:
In Factor, loading a source file replaces any existing definitions\footnote{But see \ref{compiler} for this is not true of compiled code.}. Each word definition remembers what source file it was loaded from (if any). To reload the source file associated with a definition, use the \texttt{reload} word:
\begin{alltt}
\textbf{ok}\ttbs draw reload
\end{alltt}
Word definitions also retain the line number where they are located in their original source file. This allows you to open a word definition in jEdit\footnote{\texttt{http://www.jedit.org}} for editing using the
\texttt{jedit} word:
\begin{alltt}
\textbf{ok}\ttbs compile jedit
\end{alltt}
This word requires that a jEdit instance is already running.
For the \texttt{jedit} word to work with words in the Factor library, you must set the \texttt{"resource-path"} variable to the location of the Factor source tree. One way to do this is to add a phrase like the following to your \texttt{.factor-rc}:
\begin{verbatim}
"/home/slava/Factor/" "resource-path" set
\end{verbatim}
On startup, Factor reads the \texttt{.factor-rc} file from your home directory. You can put
any quick definitions you want available at the listener there. To avoid loading this
file, pass the \texttt{-no-user-init} command line switch. Another way to have a set of definitions available at all times is to save a custom image, as described in the next section.
\subsection{Images}
The \texttt{factor.image} file is basically a dump of all objects in the heap. A new image can be saved as follows:
\begin{alltt}
\textbf{ok} "work.image" save-image
\textbf{Saving work.image...}
\end{alltt}
When you save an image before exiting Factor, then start Factor again, everything will be almost as you left it. Try the following:
\begin{alltt}
./f factor.image
\textbf{ok} "Learn Factor" "reminder" set
\textbf{ok} "factor.image" save-image bye
\textbf{Saving factor.image...}
\end{alltt}
Factor will save the image and exit. Now start it again and see that the reminder is still there:
\begin{alltt}
./f factor.image
\textbf{ok} "reminder" get .
\textbf{"Learn Factor"}
\end{alltt}
This is what is meant by the image being an \emph{infinite session}. When you shut down and restart Factor, what happends is much closer to a Laptop's ``suspend'' mode, than a desktop computer being fully shut down.
\subsection{Looking at objects}
. prints an object in almost-readable form
printing numbers in other bases, [.], {.}
we can inspect memory with instances references heap-stats
\section{Word tools}
\subsection{Exploring vocabularies}
Factor organizes code in a two-tier structure of vocabularies and words. A word is the smallest unit of code; it corresponds to a function or method in other languages. Vocabularies group related words together for easy browsing and tracking of source dependencies.
Entering \texttt{vocabs.}~in the listener produces a list of all existing vocabularies:
You can look at the definition of any word, including library words, using \texttt{see}. Keep in mind you might have to \texttt{USE:} the vocabulary first.
The \texttt{see} word shows a reconstruction of the source code, not the original source code. So in particular, formatting and some comments are lost.
\subsection{Cross-referencing words}
The \texttt{apropos.} word is handy when searching for related words. It lists all words
whose names contain a given string. The \texttt{apropos.} word is also useful when you know the exact name of a word, but are unsure what vocabulary it is in. For example, if you're looking for ways to iterate over various collections, you can do an apropos search for \texttt{map}:
\begin{alltt}
\textbf{ok} "map" apropos.
\textbf{IN: inference
type-value-map
IN: lists
map
map-with
IN: sdl
set-surface-map
surface-map
IN: strings
string-map
IN: vectors
vector-map}
\end{alltt}
From the above output, you can see that \texttt{map} is for lists, \texttt{string-map} is for strings, and \texttt{vector-map} is for vectors.
The \texttt{usages.} word finds all words that refer to a given word. This word is helpful in two situations; the first is for learning -- a good way to learn a word is to see it used in context. The second is during refactoring -- if you change a word's stack effect, you must also update all words that call it.
\begin{alltt}
\textbf{ok}\ttbs string-map usages.
\textbf{IN: gadgets
filter-nulls
IN: html
chars>entities
IN: url-encoding
url-encode}
\end{alltt}
\subsection{Browsing via the HTTP server}
A more sophisticated way to browse the library is using the integrated HTTP server. You can start the HTTP server using the following pair of commands:
\begin{alltt}
\textbf{ok} USE: httpd
\textbf{ok} 8888 httpd
\end{alltt}
Then, point your browser to the following URL, and start browsing:
You can even start the HTTP in a separate thread, and look at code in your web browser while continuing to play in the listener:
\begin{alltt}
\textbf{ok} USE: httpd
\textbf{ok} USE: threads
\textbf{ok} [ 8888 httpd ] in-thread
\end{alltt}
\section{Dealing with runtime errors}
Since Factor does very little ``static'' or compile-time checking, you will have to learn how to deal with and fix runtime errors. On the upside, the tools available are pretty nice.
To see the contents of the data stack, use the \texttt{.s} word. Similarly, the other stacks can be shown with \texttt{.r} (return stack), \texttt{.n} (name stack), and \texttt{.c} (catch stack). Each stack is printed with each element on its own line; the top of the stack is the first element printed.
The words \texttt{:s}, \texttt{:r}, \texttt{:n} and \texttt{:s} behave like their counterparts that are prefixed with \texttt{.}, except they show the stacks as they were when the error was thrown.
The return stack warrants some special attention. To successfully develop Factor, you will need to learn to understand how it works. Lets look at the first few lines of the return stack at the time of the above error:
\begin{verbatim}
[ swap cdr ]
uncons
[ r> tuck 2slip ]
(each)
[ swons ]
[ each ]
each
\end{verbatim}
You can see the sequence of calls leading up to the error was \texttt{each} calling \texttt{(each)} calling \texttt{uncons}. The error tells us that the \texttt{car} word is the one that failed. Now, you can stare at the stack dump, at notice that if the call to \texttt{car} was successful and execution returned to \texttt{(each)}, the quotation \texttt{[ r> tuck 2slip ]} would resume executing. The first word there, \texttt{r>}, would take the quotation \texttt{[ swons ]} and put it back on the data stack. After \texttt{(each)} returned, it would then continue executing the quotation \texttt{[ each ]}. So what is going on here is a recursive loop, \texttt{[ swons ] each}. If you look at the definition of \texttt{reverse}, you will see that this is exactly what is being done:
\begin{verbatim}
: reverse ( list -- list ) [ ] swap [ swons ] each ;
\end{verbatim}
So a list is being reversed, but at some stage, the \texttt{car} is taken of something that is not a number. Now, you can look at the data stack with \texttt{:s}:
So now, the mystery has been solved: as \texttt{reverse} iterates down the input value, it hits a cons cells whose \texttt{cdr} is not a list. Indeed, if you look at the value we are passing to \texttt{reverse}, you will see why:
\begin{alltt}
\textbf{ok} [ 1 2 3 ] 4 append .
[[ 1 [[ 2 [[ 3 4 ]] ]] ]]
\end{alltt}
In the future, the debugger will be linked with the walker, documented below. Right now, the walker is a separate tool. Another caveat is that in compiled code, the return stack is not reconstructed if there is an error. Until this is fixed, you should only compile code once it is debugged. Finally, remember that unit testing is a great way to ensure that old bugs do not re-appear once they've been fixed.
The walker lets you step through the execution of a qotation. When a colon definition is reached, you can either keep walking inside the definition, or execute it in one step. The stacks can be inspected at each stage.
There are two ways to use the walker. The first is to invoke it at the listener with an explicit quotation:
If you accidentally start an infinite loop, you can send the Factor runtime a \texttt{QUIT} signal. On Unix, this is done by pressing \textbf{Control-\ttbs} in the controlling terminal. This will cause the runtime to dump the data and return stacks in a semi-readable form. Note that this will help you find the root cause of the hang, but it will not let you interrupt the infinite loop.