factor/extra/project-euler/common/common.factor

96 lines
2.3 KiB
Factor
Raw Normal View History

USING: arrays kernel hashtables math math.functions math.miller-rabin
math.parser math.ranges namespaces sequences combinators.lib ;
IN: project-euler.common
! A collection of words used by more than one Project Euler solution.
: nth-pair ( n seq -- nth next )
over 1+ over nth >r nth r> ;
<PRIVATE
: count-shifts ( seq width -- n )
>r length 1+ r> - ;
: shift-3rd ( seq obj obj -- seq obj obj )
rot 1 tail -rot ;
2007-12-25 00:13:01 -05:00
: max-children ( seq -- seq )
[ dup length 1- [ over nth-pair max , ] each ] { } make nip ;
: >multiplicity ( seq -- seq )
dup prune [
[ 2dup [ = ] curry count 2array , ] each
] { } make nip ; inline
: reduce-2s ( n -- r s )
dup even? [ factor-2s >r 1+ r> ] [ 1 swap ] if ;
PRIVATE>
: collect-consecutive ( seq width -- seq )
[
2dup count-shifts [ 2dup head shift-3rd , ] times
] { } make 2nip ;
: divisor? ( n m -- ? )
mod zero? ;
: max-path ( triangle -- n )
dup length 1 > [
2 cut* first2 max-children [ + ] 2map add max-path
] [
first first
] if ;
2007-12-25 00:13:01 -05:00
: number>digits ( n -- seq )
number>string string>digits ;
: perfect-square? ( n -- ? )
2007-12-25 00:13:01 -05:00
dup sqrt divisor? ;
: prime-factorization ( n -- seq )
[
2 [ over 1 > ]
[ 2dup divisor? [ dup , [ / ] keep ] [ next-prime ] if ]
[ ] while 2drop
] { } make ;
: prime-factorization* ( n -- seq )
prime-factorization >multiplicity ;
: prime-factors ( n -- seq )
prime-factorization prune >array ;
: (sum-divisors) ( n -- sum )
dup sqrt >fixnum [1,b] [
[ 2dup divisor? [ 2dup / + , ] [ drop ] if ] each
dup perfect-square? [ sqrt >fixnum neg , ] [ drop ] if
] { } make sum ;
: sum-divisors ( n -- sum )
dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
: sum-proper-divisors ( n -- sum )
dup sum-divisors swap - ;
: abundant? ( n -- ? )
dup sum-proper-divisors < ;
: deficient? ( n -- ? )
dup sum-proper-divisors > ;
: perfect? ( n -- ? )
dup sum-proper-divisors = ;
! The divisor function, counts the number of divisors
: tau ( n -- n )
prime-factorization* flip second 1 [ 1+ * ] reduce ;
! Optimized brute-force, is often faster than prime factorization
: tau* ( n -- n )
2007-12-25 00:13:01 -05:00
reduce-2s [ perfect-square? -1 0 ? ] keep
dup sqrt >fixnum [1,b] [
dupd divisor? [ >r 2 + r> ] when
] each drop * ;