48 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Factor
		
	
	
		
		
			
		
	
	
			48 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Factor
		
	
	
| 
								 | 
							
								! Copyright (c) 2008 Aaron Schaefer.
							 | 
						|||
| 
								 | 
							
								! See http://factorcode.org/license.txt for BSD license.
							 | 
						|||
| 
								 | 
							
								USING: kernel math math.functions math.ranges project-euler.common sequences ;
							 | 
						|||
| 
								 | 
							
								IN: project-euler.044
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! http://projecteuler.net/index.php?section=problems&id=44
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! DESCRIPTION
							 | 
						|||
| 
								 | 
							
								! -----------
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! Pentagonal numbers are generated by the formula, Pn=n(3n−1)/2. The first ten
							 | 
						|||
| 
								 | 
							
								! pentagonal numbers are:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								!     1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference,
							 | 
						|||
| 
								 | 
							
								! 70 − 22 = 48, is not pentagonal.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! Find the pair of pentagonal numbers, Pj and Pk, for which their sum and
							 | 
						|||
| 
								 | 
							
								! difference is pentagonal and D = |Pk − Pj| is minimised; what is the value of D?
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! SOLUTION
							 | 
						|||
| 
								 | 
							
								! --------
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! Brute force using a cartesian product and an arbitrarily chosen limit.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<PRIVATE
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								: nth-pentagonal ( n -- seq )
							 | 
						|||
| 
								 | 
							
								    dup 3 * 1- * 2 / ;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								: sum-and-diff? ( m n -- ? )
							 | 
						|||
| 
								 | 
							
								    2dup + -rot - [ pentagonal? ] 2apply and ;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								PRIVATE>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								: euler044 ( -- answer )
							 | 
						|||
| 
								 | 
							
								    2500 [1,b] [ nth-pentagonal ] map dup cartesian-product
							 | 
						|||
| 
								 | 
							
								    [ first2 sum-and-diff? ] subset [ first2 - abs ] map infimum ;
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! [ euler044 ] 10 ave-time
							 | 
						|||
| 
								 | 
							
								! 8924 ms run / 2872 ms GC ave time - 10 trials
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								! TODO: this solution is ugly and not very efficient...find a better algorithm
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								MAIN: euler044
							 |