factor/extra/math/analysis/analysis.factor

111 lines
2.7 KiB
Factor
Raw Normal View History

2007-09-20 18:09:08 -04:00
USING: kernel math math.constants math.functions math.intervals
math.vectors namespaces sequences ;
IN: math.analysis
<PRIVATE
! http://www.rskey.org/gamma.htm "Lanczos Approximation"
! n=6: error ~ 3 x 10^-11
: gamma-g6 5.15 ; inline
: gamma-p6
{
2.50662827563479526904 225.525584619175212544 -268.295973841304927459
80.9030806934622512966 -5.00757863970517583837 0.0114684895434781459556
} ; inline
: gamma-z ( x n -- seq )
[ + recip ] curry* map 1.0 0 pick set-nth ;
: (gamma-lanczos6) ( x -- log[gamma[x+1]] )
#! log(gamma(x+1)
dup 0.5 + dup gamma-g6 + dup >r log * r> -
swap 6 gamma-z gamma-p6 v. log + ;
: gamma-lanczos6 ( x -- gamma[x] )
#! gamma(x) = gamma(x+1) / x
dup (gamma-lanczos6) exp swap / ;
: gammaln-lanczos6 ( x -- gammaln[x] )
#! log(gamma(x)) = log(gamma(x+1)) - log(x)
dup (gamma-lanczos6) swap log - ;
: gamma-neg ( gamma[abs[x]] x -- gamma[x] )
dup pi * sin * * pi neg swap / ; inline
PRIVATE>
: gamma ( x -- y )
#! gamma(x) = integral 0..inf [ t^(x-1) exp(-t) ] dt
#! gamma(n+1) = n! for n > 0
dup 0.0 <= over 1.0 mod zero? and [
drop 1./0.
] [
dup abs gamma-lanczos6 swap dup 0 > [ drop ] [ gamma-neg ] if
] if ;
: gammaln ( x -- gamma[x] )
#! gammaln(x) is an alternative when gamma(x)'s range
#! varies too widely
dup 0 < [
drop 1./0.
] [
dup abs gammaln-lanczos6 swap dup 0 > [ drop ] [ gamma-neg ] if
] if ;
: nth-root ( n x -- y )
over 0 = [ "0th root is undefined" throw ] when >r recip r> swap ^ ;
! Forth Scientific Library Algorithm #1
!
! Evaluates the Real Exponential Integral,
! E1(x) = - Ei(-x) = int_x^\infty exp^{-u}/u du for x > 0
! using a rational approximation
!
! Collected Algorithms from ACM, Volume 1 Algorithms 1-220,
! 1980; Association for Computing Machinery Inc., New York,
! ISBN 0-89791-017-6
!
! (c) Copyright 1994 Everett F. Carter. Permission is granted by the
! author to use this software for any application provided the
! copyright notice is preserved.
: exp-int ( x -- y )
#! For real values of x only. Accurate to 7 decimals.
dup 1.0 < [
dup 0.00107857 * 0.00976004 -
over *
0.05519968 +
over *
0.24991055 -
over *
0.99999193 +
over *
0.57721566 -
swap log -
] [
dup 8.5733287401 +
over *
18.059016973 +
over *
8.6347608925 +
over *
0.2677737343 +
over
dup 9.5733223454 +
over *
25.6329561486 +
over *
21.0996530827 +
over *
3.9584969228 +
nip
/
over /
swap -1.0 * exp
*
] if ;