factor/vm/free_list_allocator.hpp

424 lines
9.4 KiB
C++
Raw Normal View History

namespace factor
{
static const cell free_list_count = 32;
struct free_heap_block
{
cell header;
free_heap_block *next_free;
bool free_p() const
{
return header & 1 == 1;
}
cell size() const
{
return header >> 3;
}
void make_free(cell size)
{
header = (size << 3) | 1;
}
};
struct free_list {
free_heap_block *small_blocks[free_list_count];
free_heap_block *large_blocks;
};
template<typename Block> struct free_list_allocator {
cell size;
cell start;
cell end;
free_list free_blocks;
mark_bits<Block> state;
explicit free_list_allocator(cell size, cell start);
bool contains_p(Block *block);
Block *first_block();
Block *last_block();
Block *next_block_after(Block *block);
void clear_free_list();
void add_to_free_list(free_heap_block *block);
2009-10-22 00:24:35 -04:00
void initial_free_list(cell size);
void assert_free_block(free_heap_block *block);
free_heap_block *find_free_block(cell size);
free_heap_block *split_free_block(free_heap_block *block, cell size);
Block *allot(cell size);
void free(Block *block);
void usage(cell *used, cell *total_free, cell *max_free);
cell occupied();
void sweep();
template<typename Iterator> void sweep(Iterator &iter);
2009-10-25 00:51:14 -04:00
template<typename Iterator, typename Sizer> void compact(Iterator &iter, Sizer &sizer);
template<typename Iterator, typename Sizer> void iterate(Iterator &iter, Sizer &sizer);
template<typename Iterator> void iterate(Iterator &iter);
};
template<typename Block>
free_list_allocator<Block>::free_list_allocator(cell size_, cell start_) :
size(size_), start(start_), end(start_ + size_), state(mark_bits<Block>(size_,start_))
{
2009-10-22 00:24:35 -04:00
initial_free_list(0);
}
template<typename Block> void free_list_allocator<Block>::clear_free_list()
{
memset(&free_blocks,0,sizeof(free_list));
}
template<typename Block> bool free_list_allocator<Block>::contains_p(Block *block)
{
return ((cell)block - start) < size;
}
template<typename Block> Block *free_list_allocator<Block>::first_block()
{
return (Block *)start;
}
template<typename Block> Block *free_list_allocator<Block>::last_block()
{
return (Block *)end;
}
template<typename Block> Block *free_list_allocator<Block>::next_block_after(Block *block)
{
return (Block *)((cell)block + block->size());
}
template<typename Block> void free_list_allocator<Block>::add_to_free_list(free_heap_block *block)
{
if(block->size() < free_list_count * block_granularity)
{
int index = block->size() / block_granularity;
block->next_free = free_blocks.small_blocks[index];
free_blocks.small_blocks[index] = block;
}
else
{
block->next_free = free_blocks.large_blocks;
free_blocks.large_blocks = block;
}
}
/* Called after reading the heap from the image file, and after heap compaction.
Makes a free list consisting of one free block, at the very end. */
2009-10-22 00:24:35 -04:00
template<typename Block> void free_list_allocator<Block>::initial_free_list(cell size)
{
clear_free_list();
2009-10-21 20:41:54 -04:00
if(size != this->size)
{
free_heap_block *last_block = (free_heap_block *)(start + size);
last_block->make_free(end - (cell)last_block);
add_to_free_list(last_block);
}
}
template<typename Block> void free_list_allocator<Block>::assert_free_block(free_heap_block *block)
{
#ifdef FACTOR_DEBUG
assert(block->free_p());
#endif
}
template<typename Block> free_heap_block *free_list_allocator<Block>::find_free_block(cell size)
{
cell attempt = size;
while(attempt < free_list_count * block_granularity)
{
int index = attempt / block_granularity;
free_heap_block *block = free_blocks.small_blocks[index];
if(block)
{
assert_free_block(block);
free_blocks.small_blocks[index] = block->next_free;
return block;
}
attempt *= 2;
}
free_heap_block *prev = NULL;
free_heap_block *block = free_blocks.large_blocks;
while(block)
{
assert_free_block(block);
if(block->size() >= size)
{
if(prev)
prev->next_free = block->next_free;
else
free_blocks.large_blocks = block->next_free;
return block;
}
prev = block;
block = block->next_free;
}
return NULL;
}
template<typename Block> free_heap_block *free_list_allocator<Block>::split_free_block(free_heap_block *block, cell size)
{
if(block->size() != size)
{
/* split the block in two */
free_heap_block *split = (free_heap_block *)((cell)block + size);
2009-10-21 20:41:54 -04:00
split->make_free(block->size() - size);
split->next_free = block->next_free;
2009-10-21 20:41:54 -04:00
block->make_free(size);
add_to_free_list(split);
}
return block;
}
template<typename Block> Block *free_list_allocator<Block>::allot(cell size)
{
size = align(size,block_granularity);
free_heap_block *block = find_free_block(size);
if(block)
{
block = split_free_block(block,size);
return (Block *)block;
}
else
return NULL;
}
template<typename Block> void free_list_allocator<Block>::free(Block *block)
{
free_heap_block *free_block = (free_heap_block *)block;
2009-10-21 20:41:54 -04:00
free_block->make_free(block->size());
add_to_free_list(free_block);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */
template<typename Block> void free_list_allocator<Block>::usage(cell *used, cell *total_free, cell *max_free)
{
*used = 0;
*total_free = 0;
*max_free = 0;
Block *scan = first_block();
Block *end = last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
*total_free += size;
if(size > *max_free)
*max_free = size;
}
else
*used += size;
scan = next_block_after(scan);
}
}
/* The size of the heap after compaction */
template<typename Block> cell free_list_allocator<Block>::occupied()
{
Block *scan = first_block();
Block *last = last_block();
while(scan != last)
{
if(scan->free_p()) break;
else scan = next_block_after(scan);
}
if(scan != last)
{
free_heap_block *free_block = (free_heap_block *)scan;
assert(free_block->free_p());
assert((cell)scan + free_block->size() == end);
return (cell)scan - (cell)first_block();
}
else
return size;
}
template<typename Block>
void free_list_allocator<Block>::sweep()
{
this->clear_free_list();
Block *prev = NULL;
Block *scan = this->first_block();
Block *end = this->last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->make_free(free_prev->size() + size);
}
else
prev = scan;
}
else if(this->state.marked_p(scan))
{
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
prev = scan;
}
else
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->make_free(free_prev->size() + size);
}
else
{
2009-10-21 20:41:54 -04:00
free_heap_block *free_block = (free_heap_block *)scan;
free_block->make_free(size);
prev = scan;
}
}
scan = (Block *)((cell)scan + size);
}
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
}
template<typename Block>
template<typename Iterator>
void free_list_allocator<Block>::sweep(Iterator &iter)
{
this->clear_free_list();
Block *prev = NULL;
Block *scan = this->first_block();
Block *end = this->last_block();
while(scan != end)
{
cell size = scan->size();
if(scan->free_p())
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->make_free(free_prev->size() + size);
}
else
prev = scan;
}
else if(this->state.marked_p(scan))
{
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
prev = scan;
iter(scan,size);
}
else
{
if(prev && prev->free_p())
{
free_heap_block *free_prev = (free_heap_block *)prev;
free_prev->make_free(free_prev->size() + size);
}
else
{
2009-10-21 20:41:54 -04:00
free_heap_block *free_block = (free_heap_block *)scan;
free_block->make_free(size);
prev = scan;
}
}
scan = (Block *)((cell)scan + size);
}
if(prev && prev->free_p())
this->add_to_free_list((free_heap_block *)prev);
}
2009-10-25 09:07:21 -04:00
template<typename Block, typename Iterator> struct heap_compactor {
mark_bits<Block> *state;
char *address;
Iterator &iter;
explicit heap_compactor(mark_bits<Block> *state_, Block *address_, Iterator &iter_) :
state(state_), address((char *)address_), iter(iter_) {}
void operator()(Block *block, cell size)
{
if(this->state->marked_p(block))
{
iter(block,(Block *)address,size);
address += size;
}
}
};
/* The forwarding map must be computed first by calling
state.compute_forwarding(). */
template<typename Block>
2009-10-25 00:51:14 -04:00
template<typename Iterator, typename Sizer>
void free_list_allocator<Block>::compact(Iterator &iter, Sizer &sizer)
{
heap_compactor<Block,Iterator> compactor(&state,first_block(),iter);
2009-10-25 00:51:14 -04:00
this->iterate(compactor,sizer);
/* Now update the free list; there will be a single free block at
the end */
2009-10-22 00:24:35 -04:00
this->initial_free_list((cell)compactor.address - this->start);
}
2009-10-25 00:51:14 -04:00
/* During compaction we have to be careful and measure object sizes differently */
template<typename Block>
2009-10-25 00:51:14 -04:00
template<typename Iterator, typename Sizer>
void free_list_allocator<Block>::iterate(Iterator &iter, Sizer &sizer)
{
Block *scan = first_block();
Block *end = last_block();
while(scan != end)
{
2009-10-25 00:51:14 -04:00
cell size = sizer(scan);
Block *next = (Block *)((cell)scan + size);
if(!scan->free_p()) iter(scan,size);
scan = next;
}
}
2009-10-25 00:51:14 -04:00
template<typename Block> struct standard_sizer {
cell operator()(Block *block)
{
return block->size();
}
};
template<typename Block>
template<typename Iterator>
void free_list_allocator<Block>::iterate(Iterator &iter)
{
standard_sizer<Block> sizer;
iterate(iter,sizer);
}
}