78 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Factor
		
	
	
		
		
			
		
	
	
			78 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Factor
		
	
	
| 
								 | 
							
								! Copyright (c) 2009 Guillaume Nargeot.
							 | 
						||
| 
								 | 
							
								! See http://factorcode.org/license.txt for BSD license.
							 | 
						||
| 
								 | 
							
								USING: kernel math lists lists.lazy project-euler.common sequences ;
							 | 
						||
| 
								 | 
							
								IN: project-euler.065
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! http://projecteuler.net/index.php?section=problems&id=065
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! DESCRIPTION
							 | 
						||
| 
								 | 
							
								! -----------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! The square root of 2 can be written as an infinite continued fraction.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								!                      1
							 | 
						||
| 
								 | 
							
								! √2 = 1 + -------------------------
							 | 
						||
| 
								 | 
							
								!                        1
							 | 
						||
| 
								 | 
							
								!          2 + ---------------------
							 | 
						||
| 
								 | 
							
								!                          1
							 | 
						||
| 
								 | 
							
								!              2 + -----------------
							 | 
						||
| 
								 | 
							
								!                            1
							 | 
						||
| 
								 | 
							
								!                  2 + -------------
							 | 
						||
| 
								 | 
							
								!                      2 + ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! The infinite continued fraction can be written, √2 = [1;(2)], (2) indicates
							 | 
						||
| 
								 | 
							
								! that 2 repeats ad infinitum. In a similar way, √23 = [4;(1,3,1,8)].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! It turns out that the sequence of partial values of continued fractions for
							 | 
						||
| 
								 | 
							
								! square roots provide the best rational approximations. Let us consider the
							 | 
						||
| 
								 | 
							
								! convergents for √2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								!     1   3         1     7           1       17             1         41
							 | 
						||
| 
								 | 
							
								! 1 + - = - ; 1 + ----- = - ; 1 + --------- = -- ; 1 + ------------- = --
							 | 
						||
| 
								 | 
							
								!     2   2           1   5             1     12               1       29
							 | 
						||
| 
								 | 
							
								!                 2 + -           2 + -----            2 + ---------
							 | 
						||
| 
								 | 
							
								!                     2                   1                      1  
							 | 
						||
| 
								 | 
							
								!                                     2 + -                2 + -----
							 | 
						||
| 
								 | 
							
								!                                         2                        1
							 | 
						||
| 
								 | 
							
								!                                                              2 + -
							 | 
						||
| 
								 | 
							
								!                                                                  2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Hence the sequence of the first ten convergents for √2 are:
							 | 
						||
| 
								 | 
							
								! 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! What is most surprising is that the important mathematical constant,
							 | 
						||
| 
								 | 
							
								! e = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2k,1, ...].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! The first ten terms in the sequence of convergents for e are:
							 | 
						||
| 
								 | 
							
								! 2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Find the sum of digits in the numerator of the 100th convergent of the
							 | 
						||
| 
								 | 
							
								! continued fraction for e.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! SOLUTION
							 | 
						||
| 
								 | 
							
								! --------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<PRIVATE
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: (e-frac) ( -- seq )
							 | 
						||
| 
								 | 
							
								    2 lfrom [
							 | 
						||
| 
								 | 
							
								        dup 3 mod zero? [ 3 / 2 * ] [ drop 1 ] if
							 | 
						||
| 
								 | 
							
								    ] lazy-map ;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: e-frac ( n -- n )
							 | 
						||
| 
								 | 
							
								    1 - (e-frac) ltake list>array reverse 0
							 | 
						||
| 
								 | 
							
								    [ + recip ] reduce 2 + ;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								PRIVATE>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: euler065 ( -- answer )
							 | 
						||
| 
								 | 
							
								    100 e-frac numerator number>digits sum ;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! [ euler065 ] 100 ave-time
							 | 
						||
| 
								 | 
							
								! 4 ms ave run time - 0.33 SD (100 trials)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								SOLUTION: euler065
							 |