Merge branch 'master' of git://factorcode.org/git/factor

db4
Doug Coleman 2009-02-09 19:17:00 -06:00
commit 0237034cad
45 changed files with 1547 additions and 808 deletions

View File

@ -185,6 +185,9 @@ M: f byte-length drop 0 ;
[ "Cannot read struct fields with this type" throw ]
] unless* ;
: c-type-getter-boxer ( name -- quot )
[ c-getter ] [ c-type-boxer-quot ] bi append ;
: c-setter ( name -- quot )
c-type-setter [
[ "Cannot write struct fields with this type" throw ]

View File

@ -15,4 +15,4 @@ C-STRUCT: complex-holder
C{ 1.0 2.0 } <complex-holder> "h" set
] unit-test
[ C{ 1.0 2.0 } ] [ "h" get complex-holder-z ] unit-test
[ C{ 1.0 2.0 } ] [ "h" get complex-holder-z ] unit-test

View File

@ -12,15 +12,15 @@ T-imaginary DEFINES ${T}-imaginary
set-T-real DEFINES set-${T}-real
set-T-imaginary DEFINES set-${T}-imaginary
>T DEFINES >${T}
T> DEFINES ${T}>
<T> DEFINES <${T}>
*T DEFINES *${T}
WHERE
: >T ( z -- alien )
: <T> ( z -- alien )
>rect T <c-object> [ set-T-imaginary ] [ set-T-real ] [ ] tri ; inline
: T> ( alien -- z )
: *T ( alien -- z )
[ T-real ] [ T-imaginary ] bi rect> ; inline
T in get
@ -28,8 +28,8 @@ T in get
define-struct
T c-type
T> 1quotation >>boxer-quot
>T 1quotation >>unboxer-quot
<T> 1quotation >>unboxer-quot
*T 1quotation >>boxer-quot
drop
;FUNCTOR
;FUNCTOR

View File

@ -0,0 +1,56 @@
! Copyright (C) 2009 Joe Groff
! See http://factorcode.org/license.txt for BSD license.
USING: help.markup help.syntax kernel quotations sequences strings ;
QUALIFIED-WITH: alien.syntax c
IN: alien.fortran
ARTICLE: "alien.fortran-types" "Fortran types"
"The Fortran FFI recognizes the following Fortran types:"
{ $list
{ { $snippet "INTEGER" } " specifies a four-byte integer value. Sized integers can be specified with " { $snippet "INTEGER*1" } ", " { $snippet "INTEGER*2" } ", " { $snippet "INTEGER*4" } ", and " { $snippet "INTEGER*8" } "." }
{ { $snippet "LOGICAL" } " specifies a four-byte boolean value. Sized booleans can be specified with " { $snippet "LOGICAL*1" } ", " { $snippet "LOGICAL*2" } ", " { $snippet "LOGICAL*4" } ", and " { $snippet "LOGICAL*8" } "." }
{ { $snippet "REAL" } " specifies a single-precision floating-point real value." }
{ { $snippet "DOUBLE-PRECISION" } " specifies a double-precision floating-point real value. The alias " { $snippet "REAL*8" } " is also recognized." }
{ { $snippet "COMPLEX" } " specifies a single-precision floating-point complex value." }
{ { $snippet "DOUBLE-COMPLEX" } " specifies a double-precision floating-point complex value. The alias " { $snippet "COMPLEX*16" } " is also recognized." }
{ { $snippet "CHARACTER(n)" } " specifies a character string of length " { $snippet "n" } ". The Fortran 77 syntax " { $snippet "CHARACTER*n" } " is also recognized." }
{ "Fortran arrays can be specified by suffixing a comma-separated set of dimensions in parentheses, e.g. " { $snippet "REAL(2,3,4)" } ". Arrays of unspecified length can be specified using " { $snippet "*" } " as a dimension. Arrays are passed in as flat " { $link "specialized-arrays" } "." }
{ "Fortran records defined by " { $link POSTPONE: RECORD: } " and C structs defined by " { $link POSTPONE: c:C-STRUCT: } " are also supported as parameters." }
}
"When declaring the parameters of Fortran functions, an output argument can be specified by prefixing an exclamation point to the type name. This will cause the function word to leave the final value of the parameter on the stack." ;
HELP: FUNCTION:
{ $syntax "FUNCTION: RETURN-TYPE NAME ( [!]ARGUMENT-TYPE NAME, ... ) ;" }
{ $description "Declares a Fortran function binding with the given return type and arguments. See " { $link "alien.fortran-types" } " for a list of supported types." } ;
HELP: SUBROUTINE:
{ $syntax "SUBROUTINE: NAME ( [!]ARGUMENT-TYPE NAME, ... ) ;" }
{ $description "Declares a Fortran subroutine binding with the given arguments. See " { $link "alien.fortran-types" } " for a list of supported types." } ;
HELP: LIBRARY:
{ $syntax "LIBRARY: name" }
{ $values { "name" "a logical library name" } }
{ $description "Sets the logical library for subsequent " { $link POSTPONE: FUNCTION: } " and " { $link POSTPONE: SUBROUTINE: } " definitions." } ;
HELP: RECORD:
{ $syntax "RECORD: NAME { \"TYPE\" \"SLOT\" } ... ;" }
{ $description "Defines a Fortran record type with the given slots." } ;
HELP: fortran-invoke
{ $values
{ "return" string } { "library" string } { "procedure" string } { "parameters" sequence }
}
{ $description "Invokes the Fortran subroutine or function " { $snippet "procedure" } " in " { $snippet "library" } " with parameters specified by the " { $link "alien.fortran-types" } " specified in the " { $snippet "parameters" } " sequence. If the " { $snippet "return" } " value is " { $link f } ", no return value is expected, otherwise a return value of the specified Fortran type is expected. Input values are taken off the top of the datastack, and output values are left for the return value (if any) and any parameters specified as out parameters by prepending " { $snippet "\"!\"" } "." }
;
ARTICLE: "alien.fortran" "Fortran FFI"
"The " { $vocab-link "alien.fortran" } " vocabulary provides an interface to code shared libraries written in Fortran."
{ $subsection "alien.fortran-types" }
{ $subsection POSTPONE: LIBRARY: }
{ $subsection POSTPONE: FUNCTION: }
{ $subsection POSTPONE: SUBROUTINE: }
{ $subsection POSTPONE: RECORD: }
{ $subsection fortran-invoke }
;
ABOUT: "alien.fortran"

View File

@ -0,0 +1,295 @@
! (c) 2009 Joe Groff, see BSD license
USING: accessors alien alien.c-types alien.complex
alien.fortran alien.strings alien.structs alien.syntax arrays
assocs byte-arrays combinators fry generalizations
io.encodings.ascii kernel macros macros.expander namespaces
sequences shuffle tools.test ;
IN: alien.fortran.tests
RECORD: FORTRAN_TEST_RECORD
{ "INTEGER" "FOO" }
{ "REAL(2)" "BAR" }
{ "CHARACTER*4" "BAS" } ;
! fortran-name>symbol-name
[ "fun_" ] [ "FUN" fortran-name>symbol-name ] unit-test
[ "fun_times__" ] [ "Fun_Times" fortran-name>symbol-name ] unit-test
[ "funtimes___" ] [ "FunTimes_" fortran-name>symbol-name ] unit-test
! fortran-type>c-type
[ "short" ]
[ "integer*2" fortran-type>c-type ] unit-test
[ "int" ]
[ "integer*4" fortran-type>c-type ] unit-test
[ "int" ]
[ "INTEGER" fortran-type>c-type ] unit-test
[ "longlong" ]
[ "iNteger*8" fortran-type>c-type ] unit-test
[ "int[0]" ]
[ "integer(*)" fortran-type>c-type ] unit-test
[ "int[0]" ]
[ "integer(3,*)" fortran-type>c-type ] unit-test
[ "int[3]" ]
[ "integer(3)" fortran-type>c-type ] unit-test
[ "int[6]" ]
[ "integer(3,2)" fortran-type>c-type ] unit-test
[ "int[24]" ]
[ "integer(4,3,2)" fortran-type>c-type ] unit-test
[ "char[1]" ]
[ "character" fortran-type>c-type ] unit-test
[ "char[17]" ]
[ "character*17" fortran-type>c-type ] unit-test
[ "char[17]" ]
[ "character(17)" fortran-type>c-type ] unit-test
[ "int" ]
[ "logical" fortran-type>c-type ] unit-test
[ "float" ]
[ "real" fortran-type>c-type ] unit-test
[ "double" ]
[ "double-precision" fortran-type>c-type ] unit-test
[ "float" ]
[ "real*4" fortran-type>c-type ] unit-test
[ "double" ]
[ "real*8" fortran-type>c-type ] unit-test
[ "complex-float" ]
[ "complex" fortran-type>c-type ] unit-test
[ "complex-double" ]
[ "double-complex" fortran-type>c-type ] unit-test
[ "complex-float" ]
[ "complex*8" fortran-type>c-type ] unit-test
[ "complex-double" ]
[ "complex*16" fortran-type>c-type ] unit-test
[ "fortran_test_record" ]
[ "fortran_test_record" fortran-type>c-type ] unit-test
! fortran-arg-type>c-type
[ "int*" { } ]
[ "integer" fortran-arg-type>c-type ] unit-test
[ "int*" { } ]
[ "integer(3)" fortran-arg-type>c-type ] unit-test
[ "int*" { } ]
[ "integer(*)" fortran-arg-type>c-type ] unit-test
[ "fortran_test_record*" { } ]
[ "fortran_test_record" fortran-arg-type>c-type ] unit-test
[ "char*" { "long" } ]
[ "character" fortran-arg-type>c-type ] unit-test
[ "char*" { "long" } ]
[ "character(17)" fortran-arg-type>c-type ] unit-test
! fortran-ret-type>c-type
[ "void" { "char*" "long" } ]
[ "character(17)" fortran-ret-type>c-type ] unit-test
[ "int" { } ]
[ "integer" fortran-ret-type>c-type ] unit-test
[ "int" { } ]
[ "logical" fortran-ret-type>c-type ] unit-test
[ "float" { } ]
[ "real" fortran-ret-type>c-type ] unit-test
[ "double" { } ]
[ "double-precision" fortran-ret-type>c-type ] unit-test
[ "void" { "complex-float*" } ]
[ "complex" fortran-ret-type>c-type ] unit-test
[ "void" { "complex-double*" } ]
[ "double-complex" fortran-ret-type>c-type ] unit-test
[ "void" { "int*" } ]
[ "integer(*)" fortran-ret-type>c-type ] unit-test
[ "void" { "fortran_test_record*" } ]
[ "fortran_test_record" fortran-ret-type>c-type ] unit-test
! fortran-sig>c-sig
[ "float" { "int*" "char*" "float*" "double*" "long" } ]
[ "real" { "integer" "character*17" "real" "real*8" } fortran-sig>c-sig ]
unit-test
[ "void" { "char*" "long" "char*" "char*" "int*" "long" "long" } ]
[ "character*18" { "character*17" "character" "integer" } fortran-sig>c-sig ]
unit-test
[ "void" { "complex-float*" "char*" "char*" "int*" "long" "long" } ]
[ "complex" { "character*17" "character" "integer" } fortran-sig>c-sig ]
unit-test
! fortran-record>c-struct
[ {
{ "double" "ex" }
{ "float" "wye" }
{ "int" "zee" }
{ "char[20]" "woo" }
} ] [
{
{ "DOUBLE-PRECISION" "EX" }
{ "REAL" "WYE" }
{ "INTEGER" "ZEE" }
{ "CHARACTER(20)" "WOO" }
} fortran-record>c-struct
] unit-test
! RECORD:
[ 16 ] [ "fortran_test_record" heap-size ] unit-test
[ 0 ] [ "foo" "fortran_test_record" offset-of ] unit-test
[ 4 ] [ "bar" "fortran_test_record" offset-of ] unit-test
[ 12 ] [ "bas" "fortran_test_record" offset-of ] unit-test
! (fortran-invoke)
[ [
! [fortran-args>c-args]
{
[ {
[ ascii string>alien ]
[ <longlong> ]
[ <float> ]
[ <complex-float> ]
[ 1 0 ? <short> ]
} spread ]
[ { [ length ] [ drop ] [ drop ] [ drop ] [ drop ] } spread ]
} 5 ncleave
! [fortran-invoke]
[
"void" "funpack" "funtimes_"
{ "char*" "longlong*" "float*" "complex-float*" "short*" "long" }
alien-invoke
] 6 nkeep
! [fortran-results>]
shuffle( aa ba ca da ea ab -- aa ab ba ca da ea )
{
[ drop ]
[ drop ]
[ drop ]
[ *float ]
[ drop ]
[ drop ]
} spread
] ] [
f "funpack" "FUNTIMES" { "CHARACTER*12" "INTEGER*8" "!REAL" "COMPLEX" "LOGICAL*2" }
(fortran-invoke)
] unit-test
[ [
! [fortran-args>c-args]
{
[ { [ ] } spread ]
[ { [ drop ] } spread ]
} 1 ncleave
! [fortran-invoke]
[ "float" "funpack" "fun_times__" { "float*" } alien-invoke ]
1 nkeep
! [fortran-results>]
shuffle( reta aa -- reta aa )
{ [ ] [ drop ] } spread
] ] [
"REAL" "funpack" "FUN_TIMES" { "REAL(*)" }
(fortran-invoke)
] unit-test
[ [
! [<fortran-result>]
[ "complex-float" <c-object> ] 1 ndip
! [fortran-args>c-args]
{ [ { [ ] } spread ] [ { [ drop ] } spread ] } 1 ncleave
! [fortran-invoke]
[
"void" "funpack" "fun_times__"
{ "complex-float*" "float*" }
alien-invoke
] 2 nkeep
! [fortran-results>]
shuffle( reta aa -- reta aa )
{ [ *complex-float ] [ drop ] } spread
] ] [
"COMPLEX" "funpack" "FUN_TIMES" { "REAL(*)" }
(fortran-invoke)
] unit-test
[ [
! [<fortran-result>]
[ 20 <byte-array> 20 ] 0 ndip
! [fortran-invoke]
[
"void" "funpack" "fun_times__"
{ "char*" "long" }
alien-invoke
] 2 nkeep
! [fortran-results>]
shuffle( reta retb -- reta retb )
{ [ ] [ ascii alien>nstring ] } spread
] ] [
"CHARACTER*20" "funpack" "FUN_TIMES" { }
(fortran-invoke)
] unit-test
[ [
! [<fortran-result>]
[ 10 <byte-array> 10 ] 3 ndip
! [fortran-args>c-args]
{
[ {
[ ascii string>alien ]
[ <float> ]
[ ascii string>alien ]
} spread ]
[ { [ length ] [ drop ] [ length ] } spread ]
} 3 ncleave
! [fortran-invoke]
[
"void" "funpack" "fun_times__"
{ "char*" "long" "char*" "float*" "char*" "long" "long" }
alien-invoke
] 7 nkeep
! [fortran-results>]
shuffle( reta retb aa ba ca ab cb -- reta retb aa ab ba ca cb )
{
[ ]
[ ascii alien>nstring ]
[ ]
[ ascii alien>nstring ]
[ *float ]
[ ]
[ ascii alien>nstring ]
} spread
] ] [
"CHARACTER*10" "funpack" "FUN_TIMES" { "!CHARACTER*20" "!REAL" "!CHARACTER*30" }
(fortran-invoke)
] unit-test

View File

@ -0,0 +1,391 @@
! (c) 2009 Joe Groff, see BSD license
USING: accessors alien alien.c-types alien.complex alien.parser
alien.strings alien.structs alien.syntax arrays ascii assocs
byte-arrays combinators combinators.short-circuit fry generalizations
kernel lexer macros math math.parser namespaces parser sequences
splitting stack-checker vectors vocabs.parser words locals
io.encodings.ascii io.encodings.string shuffle effects math.ranges
math.order sorting system ;
IN: alien.fortran
! XXX this currently only supports the gfortran/f2c abi.
! XXX we should also support ifort at some point for commercial BLASes
<<
: add-f2c-libraries ( -- )
"I77" "libI77.so" "cdecl" add-library
"F77" "libF77.so" "cdecl" add-library ;
os netbsd? [ add-f2c-libraries ] when
>>
: alien>nstring ( alien len encoding -- string )
[ memory>byte-array ] dip decode ;
: fortran-name>symbol-name ( fortran-name -- c-name )
>lower CHAR: _ over member?
[ "__" append ] [ "_" append ] if ;
ERROR: invalid-fortran-type type ;
DEFER: fortran-sig>c-sig
DEFER: fortran-ret-type>c-type
DEFER: fortran-arg-type>c-type
<PRIVATE
TUPLE: fortran-type dims size out? ;
TUPLE: number-type < fortran-type ;
TUPLE: integer-type < number-type ;
TUPLE: logical-type < integer-type ;
TUPLE: real-type < number-type ;
TUPLE: double-precision-type < number-type ;
TUPLE: character-type < fortran-type ;
TUPLE: misc-type < fortran-type name ;
TUPLE: complex-type < number-type ;
TUPLE: real-complex-type < complex-type ;
TUPLE: double-complex-type < complex-type ;
CONSTANT: fortran>c-types H{
{ "character" character-type }
{ "integer" integer-type }
{ "logical" logical-type }
{ "real" real-type }
{ "double-precision" double-precision-type }
{ "complex" real-complex-type }
{ "double-complex" double-complex-type }
}
: append-dimensions ( base-c-type type -- c-type )
dims>>
[ product number>string "[" "]" surround append ] when* ;
MACRO: size-case-type ( cases -- )
[ invalid-fortran-type ] suffix
'[ [ size>> _ case ] [ append-dimensions ] bi ] ;
: simple-type ( type base-c-type -- c-type )
swap
[ dup size>> [ invalid-fortran-type ] [ drop ] if ]
[ append-dimensions ] bi ;
: new-fortran-type ( out? dims size class -- type )
new [ [ (>>size) ] [ (>>dims) ] [ (>>out?) ] tri ] keep ;
GENERIC: (fortran-type>c-type) ( type -- c-type )
M: f (fortran-type>c-type) drop "void" ;
M: integer-type (fortran-type>c-type)
{
{ f [ "int" ] }
{ 1 [ "char" ] }
{ 2 [ "short" ] }
{ 4 [ "int" ] }
{ 8 [ "longlong" ] }
} size-case-type ;
M: real-type (fortran-type>c-type)
{
{ f [ "float" ] }
{ 4 [ "float" ] }
{ 8 [ "double" ] }
} size-case-type ;
M: real-complex-type (fortran-type>c-type)
{
{ f [ "complex-float" ] }
{ 8 [ "complex-float" ] }
{ 16 [ "complex-double" ] }
} size-case-type ;
M: double-precision-type (fortran-type>c-type)
"double" simple-type ;
M: double-complex-type (fortran-type>c-type)
"complex-double" simple-type ;
M: misc-type (fortran-type>c-type)
dup name>> simple-type ;
: fix-character-type ( character-type -- character-type' )
clone dup size>>
[ dup dims>> [ invalid-fortran-type ] [ dup size>> 1array >>dims f >>size ] if ]
[ dup dims>> [ ] [ { 1 } >>dims ] if ] if ;
M: character-type (fortran-type>c-type)
fix-character-type "char" simple-type ;
: dimension>number ( string -- number )
dup "*" = [ drop 0 ] [ string>number ] if ;
: parse-out ( string -- string' out? )
"!" ?head ;
: parse-dims ( string -- string' dim )
"(" split1 dup
[ ")" ?tail drop "," split [ [ blank? ] trim dimension>number ] map ] when ;
: parse-size ( string -- string' size )
"*" split1 dup [ string>number ] when ;
: (parse-fortran-type) ( fortran-type-string -- type )
parse-out swap parse-dims swap parse-size swap
dup >lower fortran>c-types at*
[ nip new-fortran-type ] [ drop misc-type boa ] if ;
: parse-fortran-type ( fortran-type-string/f -- type/f )
dup [ (parse-fortran-type) ] when ;
: c-type>pointer ( c-type -- c-type* )
"[" split1 drop "*" append ;
GENERIC: added-c-args ( type -- args )
M: fortran-type added-c-args drop { } ;
M: character-type added-c-args drop { "long" } ;
GENERIC: returns-by-value? ( type -- ? )
M: f returns-by-value? drop t ;
M: fortran-type returns-by-value? drop f ;
M: number-type returns-by-value? dims>> not ;
M: complex-type returns-by-value? drop f ;
GENERIC: (fortran-ret-type>c-type) ( type -- c-type )
M: f (fortran-ret-type>c-type) drop "void" ;
M: fortran-type (fortran-ret-type>c-type) (fortran-type>c-type) ;
! XXX F2C claims to return double for REAL typed functions
! XXX OSX Accelerate.framework uses float
! M: real-type (fortran-ret-type>c-type) drop "double" ;
: suffix! ( seq elt -- seq ) over push ; inline
: append! ( seq-a seq-b -- seq-a ) over push-all ; inline
GENERIC: (fortran-arg>c-args) ( type -- main-quot added-quot )
: args?dims ( type quot -- main-quot added-quot )
[ dup dims>> [ drop [ ] [ drop ] ] ] dip if ; inline
M: integer-type (fortran-arg>c-args)
[
size>> {
{ f [ [ <int> ] [ drop ] ] }
{ 1 [ [ <char> ] [ drop ] ] }
{ 2 [ [ <short> ] [ drop ] ] }
{ 4 [ [ <int> ] [ drop ] ] }
{ 8 [ [ <longlong> ] [ drop ] ] }
[ invalid-fortran-type ]
} case
] args?dims ;
M: logical-type (fortran-arg>c-args)
[ call-next-method [ [ 1 0 ? ] prepend ] dip ] args?dims ;
M: real-type (fortran-arg>c-args)
[
size>> {
{ f [ [ <float> ] [ drop ] ] }
{ 4 [ [ <float> ] [ drop ] ] }
{ 8 [ [ <double> ] [ drop ] ] }
[ invalid-fortran-type ]
} case
] args?dims ;
M: real-complex-type (fortran-arg>c-args)
[
size>> {
{ f [ [ <complex-float> ] [ drop ] ] }
{ 8 [ [ <complex-float> ] [ drop ] ] }
{ 16 [ [ <complex-double> ] [ drop ] ] }
[ invalid-fortran-type ]
} case
] args?dims ;
M: double-precision-type (fortran-arg>c-args)
[ drop [ <double> ] [ drop ] ] args?dims ;
M: double-complex-type (fortran-arg>c-args)
[ drop [ <complex-double> ] [ drop ] ] args?dims ;
M: character-type (fortran-arg>c-args)
drop [ ascii string>alien ] [ length ] ;
M: misc-type (fortran-arg>c-args)
drop [ ] [ drop ] ;
GENERIC: (fortran-result>) ( type -- quots )
: result?dims ( type quot -- quot )
[ dup dims>> [ drop { [ ] } ] ] dip if ; inline
M: integer-type (fortran-result>)
[ size>> {
{ f [ { [ *int ] } ] }
{ 1 [ { [ *char ] } ] }
{ 2 [ { [ *short ] } ] }
{ 4 [ { [ *int ] } ] }
{ 8 [ { [ *longlong ] } ] }
[ invalid-fortran-type ]
} case ] result?dims ;
M: logical-type (fortran-result>)
[ call-next-method first [ zero? not ] append 1array ] result?dims ;
M: real-type (fortran-result>)
[ size>> {
{ f [ { [ *float ] } ] }
{ 4 [ { [ *float ] } ] }
{ 8 [ { [ *double ] } ] }
[ invalid-fortran-type ]
} case ] result?dims ;
M: real-complex-type (fortran-result>)
[ size>> {
{ f [ { [ *complex-float ] } ] }
{ 8 [ { [ *complex-float ] } ] }
{ 16 [ { [ *complex-double ] } ] }
[ invalid-fortran-type ]
} case ] result?dims ;
M: double-precision-type (fortran-result>)
[ drop { [ *double ] } ] result?dims ;
M: double-complex-type (fortran-result>)
[ drop { [ *complex-double ] } ] result?dims ;
M: character-type (fortran-result>)
drop { [ ] [ ascii alien>nstring ] } ;
M: misc-type (fortran-result>)
drop { [ ] } ;
GENERIC: (<fortran-result>) ( type -- quot )
M: fortran-type (<fortran-result>)
(fortran-type>c-type) \ <c-object> [ ] 2sequence ;
M: character-type (<fortran-result>)
fix-character-type dims>> product dup
[ \ <byte-array> ] dip [ ] 3sequence ;
: [<fortran-result>] ( return parameters -- quot )
[ parse-fortran-type ] dip
over returns-by-value?
[ 2drop [ ] ]
[ [ (<fortran-result>) ] [ length \ ndip [ ] 3sequence ] bi* ] if ;
: [fortran-args>c-args] ( parameters -- quot )
[ [ ] ] [
[ parse-fortran-type (fortran-arg>c-args) 2array ] map flip first2
[ [ \ spread [ ] 2sequence ] bi@ 2array ] [ length ] bi
\ ncleave [ ] 3sequence
] if-empty ;
:: [fortran-invoke] ( [args>args] return library function parameters -- [args>args] quot )
return parameters fortran-sig>c-sig :> c-parameters :> c-return
function fortran-name>symbol-name :> c-function
[args>args]
c-return library c-function c-parameters \ alien-invoke
5 [ ] nsequence
c-parameters length \ nkeep
[ ] 3sequence ;
: [fortran-out-param>] ( parameter -- quot )
parse-fortran-type
[ (fortran-result>) ] [ out?>> ] bi
[ ] [ [ drop [ drop ] ] map ] if ;
: [fortran-return>] ( return -- quot )
parse-fortran-type {
{ [ dup not ] [ drop { } ] }
{ [ dup returns-by-value? ] [ drop { [ ] } ] }
[ (fortran-result>) ]
} cond ;
: letters ( -- seq ) CHAR: a CHAR: z [a,b] ;
: (shuffle-map) ( return parameters -- ret par )
[
fortran-ret-type>c-type length swap "void" = [ 1+ ] unless
letters swap head [ "ret" swap suffix ] map
] [
[ fortran-arg-type>c-type nip length 1+ ] map letters swap zip
[ first2 letters swap head [ "" 2sequence ] with map ] map concat
] bi* ;
: (fortran-in-shuffle) ( ret par -- seq )
[ [ second ] bi@ <=> ] sort append ;
: (fortran-out-shuffle) ( ret par -- seq )
append ;
: [fortran-result-shuffle] ( return parameters -- quot )
(shuffle-map) [ (fortran-in-shuffle) ] [ (fortran-out-shuffle) ] 2bi <effect>
\ shuffle-effect [ ] 2sequence ;
: [fortran-results>] ( return parameters -- quot )
[ [fortran-result-shuffle] ]
[ drop [fortran-return>] ]
[ nip [ [fortran-out-param>] ] map concat ] 2tri
append
\ spread [ ] 2sequence append ;
PRIVATE>
: fortran-type>c-type ( fortran-type -- c-type )
parse-fortran-type (fortran-type>c-type) ;
: fortran-arg-type>c-type ( fortran-type -- c-type added-args )
parse-fortran-type
[ (fortran-type>c-type) c-type>pointer ]
[ added-c-args ] bi ;
: fortran-ret-type>c-type ( fortran-type -- c-type added-args )
parse-fortran-type dup returns-by-value?
[ (fortran-ret-type>c-type) { } ] [
"void" swap
[ added-c-args ] [ (fortran-ret-type>c-type) c-type>pointer ] bi prefix
] if ;
: fortran-arg-types>c-types ( fortran-types -- c-types )
[ length <vector> 1 <vector> ] keep
[ fortran-arg-type>c-type swapd [ suffix! ] [ append! ] 2bi* ] each
append >array ;
: fortran-sig>c-sig ( fortran-return fortran-args -- c-return c-args )
[ fortran-ret-type>c-type ] [ fortran-arg-types>c-types ] bi* append ;
: fortran-record>c-struct ( record -- struct )
[ first2 [ fortran-type>c-type ] [ >lower ] bi* 2array ] map ;
: define-fortran-record ( name vocab fields -- )
[ >lower ] [ ] [ fortran-record>c-struct ] tri* define-struct ;
: RECORD: scan in get parse-definition define-fortran-record ; parsing
: (fortran-invoke) ( return library function parameters -- quot )
{
[ 2nip [<fortran-result>] ]
[ nip nip nip [fortran-args>c-args] ]
[ [fortran-invoke] ]
[ 2nip [fortran-results>] ]
} 4 ncleave 4 nappend ;
MACRO: fortran-invoke ( return library function parameters -- )
(fortran-invoke) ;
:: define-fortran-function ( return library function parameters -- )
function create-in dup reset-generic
return library function parameters return [ "void" ] unless* parse-arglist
[ \ fortran-invoke 5 [ ] nsequence ] dip define-declared ;
: SUBROUTINE:
f "c-library" get scan ";" parse-tokens
[ "()" subseq? not ] filter define-fortran-function ; parsing
: FUNCTION:
scan "c-library" get scan ";" parse-tokens
[ "()" subseq? not ] filter define-fortran-function ; parsing
: LIBRARY:
scan "c-library" set ; parsing

View File

@ -0,0 +1 @@
GNU Fortran/G77/F2C alien interface

View File

@ -0,0 +1,2 @@
fortran
ffi

View File

@ -58,10 +58,7 @@ PREDICATE: slot-writer < word "writing" word-prop >boolean ;
: define-getter ( type spec -- )
[ set-reader-props ] keep
[ reader>> ]
[
type>>
[ c-getter ] [ c-type-boxer-quot ] bi append
]
[ type>> c-type-getter-boxer ]
[ ] tri
(( c-ptr -- value )) define-struct-slot-word ;

View File

@ -1,6 +1,6 @@
! Copyright (C) 2004, 2008 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: accessors arrays generic hashtables kernel kernel.private
USING: accessors arrays assocs generic hashtables kernel kernel.private
math namespaces parser sequences strings words libc fry
alien.c-types alien.structs.fields cpu.architecture math.order ;
IN: alien.structs
@ -68,3 +68,8 @@ M: struct-type stack-size
[ expand-constants ] map
[ [ heap-size ] [ max ] map-reduce ] keep
compute-struct-align f (define-struct) ;
: offset-of ( field struct -- offset )
c-types get at fields>>
[ name>> = ] with find nip offset>> ;

View File

@ -1,11 +1,11 @@
USING: io.streams.string csv tools.test shuffle kernel strings
USING: io.streams.string csv tools.test kernel strings
io.pathnames io.files.unique io.encodings.utf8 io.files
io.directories ;
IN: csv.tests
! I like to name my unit tests
: named-unit-test ( name output input -- )
nipd unit-test ; inline
unit-test drop ; inline
! tests nicked from the wikipedia csv article
! http://en.wikipedia.org/wiki/Comma-separated_values

View File

@ -3,7 +3,7 @@
USING: arrays continuations db io kernel math namespaces
quotations sequences db.postgresql.ffi alien alien.c-types
db.types tools.walker ascii splitting math.parser combinators
libc shuffle calendar.format byte-arrays destructors prettyprint
libc calendar.format byte-arrays destructors prettyprint
accessors strings serialize io.encodings.binary io.encodings.utf8
alien.strings io.streams.byte-array summary present urls
specialized-arrays.uint specialized-arrays.alien db.private ;
@ -117,7 +117,7 @@ M: postgresql-result-null summary ( obj -- str )
: pq-get-string ( handle row column -- obj )
3dup PQgetvalue utf8 alien>string
dup empty? [ [ pq-get-is-null f ] dip ? ] [ 3nip ] if ;
dup empty? [ [ pq-get-is-null f ] dip ? ] [ [ 3drop ] dip ] if ;
: pq-get-number ( handle row column -- obj )
pq-get-string dup [ string>number ] when ;
@ -134,7 +134,7 @@ M: postgresql-malloc-destructor dispose ( obj -- )
: pq-get-blob ( handle row column -- obj/f )
[ PQgetvalue ] 3keep 3dup PQgetlength
dup 0 > [
3nip
[ 3drop ] dip
[
memory>byte-array >string
0 <uint>

View File

@ -81,11 +81,18 @@ CHLOE: a
CHLOE: base
compile-a-url [ [XML <base href=<->/> XML] ] [xml-code] ;
: hidden-nested-fields ( -- xml )
nested-forms get " " join f like nested-forms-key
hidden-form-field ;
: render-hidden ( for -- xml )
[ "," split [ hidden render>xml ] map ] [ f ] if* ;
: compile-hidden-form-fields ( for -- )
'[
_ [ "," split [ hidden render>xml ] map ] [ f ] if*
nested-forms get " " join f like nested-forms-key hidden-form-field>xml
[ [ modify-form ] each-responder ] with-string-writer <unescaped>
_ render-hidden
hidden-nested-fields
form-modifications
[XML <div style="display: none;"><-><-><-></div> XML]
] [code] ;

View File

@ -1,7 +1,7 @@
IN: furnace.tests
USING: http http.server.dispatchers http.server.responses
http.server furnace furnace.utilities tools.test kernel
namespaces accessors io.streams.string urls ;
namespaces accessors io.streams.string urls xml.writer ;
TUPLE: funny-dispatcher < dispatcher ;
: <funny-dispatcher> funny-dispatcher new-dispatcher ;
@ -31,7 +31,7 @@ M: base-path-check-responder call-responder*
] unit-test
[ "<input type=\"hidden\" value=\"&amp;&amp;&amp;\" name=\"foo\"/>" ]
[ [ "&&&" "foo" hidden-form-field ] with-string-writer ]
[ "&&&" "foo" hidden-form-field xml>string ]
unit-test
[ f ] [ <request> request [ referrer ] with-variable ] unit-test

View File

@ -20,13 +20,13 @@ HELP: each-responder
{ $description "Applies the quotation to each responder involved in processing the current request." } ;
HELP: hidden-form-field
{ $values { "value" string } { "name" string } }
{ $description "Renders an HTML hidden form field tag." }
{ $values { "value" string } { "name" string } { "xml" "an XML chunk" } }
{ $description "Renders an HTML hidden form field tag as XML." }
{ $notes "This word is used by session management, conversation scope and asides." }
{ $examples
{ $example
"USING: furnace.utilities io ;"
"\"bar\" \"foo\" hidden-form-field nl"
"USING: furnace.utilities io xml.writer ;"
"\"bar\" \"foo\" hidden-form-field write-xml nl"
"<input type=\"hidden\" value=\"bar\" name=\"foo\"/>"
}
} ;
@ -38,7 +38,7 @@ HELP: link-attr
{ $examples "Conversation scope adds attributes to link tags." } ;
HELP: modify-form
{ $values { "responder" "a responder" } }
{ $values { "responder" "a responder" } { "xml/f" "an XML chunk or f" } }
{ $contract "Emits hidden form fields using " { $link hidden-form-field } "." }
{ $notes "This word is called by " { $link "html.templates.chloe.tags.form" } "." }
{ $examples "Session management, conversation scope and asides use hidden form fields to pass state." } ;

View File

@ -77,18 +77,18 @@ GENERIC: link-attr ( tag responder -- )
M: object link-attr 2drop ;
GENERIC: modify-form ( responder -- )
GENERIC: modify-form ( responder -- xml/f )
M: object modify-form drop ;
M: object modify-form drop f ;
: hidden-form-field>xml ( value name -- xml )
: form-modifications ( -- xml )
[ [ modify-form [ , ] when* ] each-responder ] { } make ;
: hidden-form-field ( value name -- xml )
over [
[XML <input type="hidden" value=<-> name=<->/> XML]
] [ drop ] if ;
: hidden-form-field ( value name -- )
hidden-form-field>xml write-xml ;
: nested-forms-key "__n" ;
: request-params ( request -- assoc )

View File

@ -1,11 +1,54 @@
! Copyright (C) 2006 Chris Double.
! See http://factorcode.org/license.txt for BSD license.
USING: help.markup help.syntax sequences strings lists ;
IN: lists.lazy
ABOUT: "lists.lazy"
ARTICLE: "lists.lazy" "Lazy lists"
"The " { $vocab-link "lists.lazy" } " vocabulary implements lazy lists and standard operations to manipulate them."
{ $subsection { "lists.lazy" "construction" } }
{ $subsection { "lists.lazy" "manipulation" } }
{ $subsection { "lists.lazy" "combinators" } }
{ $subsection { "lists.lazy" "io" } } ;
ARTICLE: { "lists.lazy" "combinators" } "Combinators for manipulating lazy lists"
"The following combinators create lazy lists from other lazy lists:"
{ $subsection lmap }
{ $subsection lfilter }
{ $subsection luntil }
{ $subsection lwhile }
{ $subsection lfrom-by }
{ $subsection lcomp }
{ $subsection lcomp* } ;
ARTICLE: { "lists.lazy" "io" } "Lazy list I/O"
"Input from a stream can be read through a lazy list, using the following words:"
{ $subsection lcontents }
{ $subsection llines } ;
ARTICLE: { "lists.lazy" "construction" } "Constructing lazy lists"
"Words for constructing lazy lists:"
{ $subsection lazy-cons }
{ $subsection 1lazy-list }
{ $subsection 2lazy-list }
{ $subsection 3lazy-list }
{ $subsection seq>list }
{ $subsection >list }
{ $subsection lfrom } ;
ARTICLE: { "lists.lazy" "manipulation" } "Manipulating lazy lists"
"To make new lazy lists from old ones:"
{ $subsection <memoized-cons> }
{ $subsection lappend }
{ $subsection lconcat }
{ $subsection lcartesian-product }
{ $subsection lcartesian-product* }
{ $subsection lmerge }
{ $subsection ltake } ;
HELP: lazy-cons
{ $values { "car" { $quotation "( -- X )" } } { "cdr" { $quotation "( -- cons )" } } { "promise" "the resulting cons object" } }
{ $values { "car" { $quotation "( -- elt )" } } { "cdr" { $quotation "( -- cons )" } } { "promise" "the resulting cons object" } }
{ $description "Constructs a cons object for a lazy list from two quotations. The " { $snippet "car" } " quotation should return the head of the list, and the " { $snippet "cons" } " quotation the tail when called. When " { $link cons } " or " { $link cdr } " are called on the lazy-cons object then the appropriate quotation is called." }
{ $see-also cons car cdr nil nil? } ;
@ -28,16 +71,12 @@ HELP: <memoized-cons>
{ $description "Constructs a cons object that wraps an existing cons object. Requests for the car, cdr and nil? will be remembered after the first call, and the previous result returned on subsequent calls." }
{ $see-also cons car cdr nil nil? } ;
{ lazy-map lazy-map-with ltake lfilter lappend lfrom lfrom-by lconcat lcartesian-product lcartesian-product* lcomp lcomp* lmerge lwhile luntil } related-words
{ lazy-map ltake lfilter lappend lfrom lfrom-by lconcat lcartesian-product lcartesian-product* lcomp lcomp* lmerge lwhile luntil } related-words
HELP: lazy-map
{ $values { "list" "a cons object" } { "quot" { $quotation "( obj -- X )" } } { "result" "resulting cons object" } }
{ $description "Perform a similar functionality to that of the " { $link map } " word, but in a lazy manner. No evaluation of the list elements occurs initially but a " { $link <lazy-map> } " object is returned which conforms to the list protocol. Calling " { $link car } ", " { $link cdr } " or " { $link nil? } " on this will evaluate elements as required." } ;
HELP: lazy-map-with
{ $values { "value" "an object" } { "list" "a cons object" } { "quot" { $quotation "( obj elt -- X )" } } { "result" "resulting cons object" } }
{ $description "Variant of " { $link lazy-map } " which pushes a retained object on each invocation of the quotation." } ;
HELP: ltake
{ $values { "n" "a non negative integer" } { "list" "a cons object" } { "result" "resulting cons object" } }
{ $description "Outputs a lazy list containing the first n items in the list. This is done a lazy manner. No evaluation of the list elements occurs initially but a " { $link <lazy-take> } " object is returned which conforms to the list protocol. Calling " { $link car } ", " { $link cdr } " or " { $link nil? } " on this will evaluate elements as required." } ;
@ -86,7 +125,7 @@ HELP: >list
{ $description "Convert the object into a list. Existing lists are passed through intact, sequences are converted using " { $link seq>list } " and other objects cause an error to be thrown." }
{ $see-also seq>list } ;
{ leach foldl lazy-map lazy-map-with ltake lfilter lappend lfrom lfrom-by lconcat lcartesian-product lcartesian-product* lcomp lcomp* lmerge lwhile luntil } related-words
{ leach foldl lazy-map ltake lfilter lappend lfrom lfrom-by lconcat lcartesian-product lcartesian-product* lcomp lcomp* lmerge lwhile luntil } related-words
HELP: lconcat
{ $values { "list" "a list of lists" } { "result" "a list" } }

View File

@ -24,7 +24,7 @@ IN: lists.lazy.tests
] unit-test
[ { 4 5 6 } ] [
3 { 1 2 3 } >list [ + ] lazy-map-with list>array
3 { 1 2 3 } >list [ + ] with lazy-map list>array
] unit-test
[ [ ] lmap ] must-infer

View File

@ -90,9 +90,6 @@ M: lazy-map cdr ( lazy-map -- cdr )
M: lazy-map nil? ( lazy-map -- bool )
cons>> nil? ;
: lazy-map-with ( value list quot -- result )
with lazy-map ;
TUPLE: lazy-take n cons ;
C: <lazy-take> lazy-take
@ -301,14 +298,14 @@ M: lazy-concat nil? ( lazy-concat -- bool )
] if ;
: lcartesian-product ( list1 list2 -- result )
swap [ swap [ 2array ] lazy-map-with ] lazy-map-with lconcat ;
swap [ swap [ 2array ] with lazy-map ] with lazy-map lconcat ;
: lcartesian-product* ( lists -- result )
dup nil? [
drop nil
] [
[ car ] keep cdr [ car lcartesian-product ] keep cdr list>array swap [
swap [ swap [ suffix ] lazy-map-with ] lazy-map-with lconcat
swap [ swap [ suffix ] with lazy-map ] with lazy-map lconcat
] reduce
] if ;

View File

@ -1,574 +0,0 @@
USING: alien alien.c-types alien.syntax kernel system
combinators ;
IN: math.blas.cblas
<<
: load-atlas ( -- )
"atlas" "libatlas.so" "cdecl" add-library ;
: load-fortran ( -- )
"I77" "libI77.so" "cdecl" add-library
"F77" "libF77.so" "cdecl" add-library ;
: load-blas ( -- )
"blas" "libblas.so" "cdecl" add-library ;
"cblas" {
{ [ os macosx? ] [ "libblas.dylib" "cdecl" add-library ] }
{ [ os windows? ] [ "blas.dll" "cdecl" add-library ] }
{ [ os openbsd? ] [ "libcblas.so" "cdecl" add-library load-blas ] }
{ [ os netbsd? ] [
load-fortran load-blas
"/usr/local/lib/libcblas.so" "cdecl" add-library
] }
{ [ os freebsd? ] [ "libcblas.so" "cdecl" add-library load-atlas ] }
[ "libblas.so" "cdecl" add-library ]
} cond
>>
LIBRARY: cblas
TYPEDEF: int CBLAS_ORDER
CONSTANT: CblasRowMajor 101
CONSTANT: CblasColMajor 102
TYPEDEF: int CBLAS_TRANSPOSE
CONSTANT: CblasNoTrans 111
CONSTANT: CblasTrans 112
CONSTANT: CblasConjTrans 113
TYPEDEF: int CBLAS_UPLO
CONSTANT: CblasUpper 121
CONSTANT: CblasLower 122
TYPEDEF: int CBLAS_DIAG
CONSTANT: CblasNonUnit 131
CONSTANT: CblasUnit 132
TYPEDEF: int CBLAS_SIDE
CONSTANT: CblasLeft 141
CONSTANT: CblasRight 142
TYPEDEF: int CBLAS_INDEX
C-STRUCT: float-complex
{ "float" "real" }
{ "float" "imag" } ;
C-STRUCT: double-complex
{ "double" "real" }
{ "double" "imag" } ;
! Level 1 BLAS (scalar-vector and vector-vector)
FUNCTION: float cblas_sdsdot
( int N, float alpha, float* X, int incX, float* Y, int incY ) ;
FUNCTION: double cblas_dsdot
( int N, float* X, int incX, float* Y, int incY ) ;
FUNCTION: float cblas_sdot
( int N, float* X, int incX, float* Y, int incY ) ;
FUNCTION: double cblas_ddot
( int N, double* X, int incX, double* Y, int incY ) ;
FUNCTION: void cblas_cdotu_sub
( int N, void* X, int incX, void* Y, int incY, void* dotu ) ;
FUNCTION: void cblas_cdotc_sub
( int N, void* X, int incX, void* Y, int incY, void* dotc ) ;
FUNCTION: void cblas_zdotu_sub
( int N, void* X, int incX, void* Y, int incY, void* dotu ) ;
FUNCTION: void cblas_zdotc_sub
( int N, void* X, int incX, void* Y, int incY, void* dotc ) ;
FUNCTION: float cblas_snrm2
( int N, float* X, int incX ) ;
FUNCTION: float cblas_sasum
( int N, float* X, int incX ) ;
FUNCTION: double cblas_dnrm2
( int N, double* X, int incX ) ;
FUNCTION: double cblas_dasum
( int N, double* X, int incX ) ;
FUNCTION: float cblas_scnrm2
( int N, void* X, int incX ) ;
FUNCTION: float cblas_scasum
( int N, void* X, int incX ) ;
FUNCTION: double cblas_dznrm2
( int N, void* X, int incX ) ;
FUNCTION: double cblas_dzasum
( int N, void* X, int incX ) ;
FUNCTION: CBLAS_INDEX cblas_isamax
( int N, float* X, int incX ) ;
FUNCTION: CBLAS_INDEX cblas_idamax
( int N, double* X, int incX ) ;
FUNCTION: CBLAS_INDEX cblas_icamax
( int N, void* X, int incX ) ;
FUNCTION: CBLAS_INDEX cblas_izamax
( int N, void* X, int incX ) ;
FUNCTION: void cblas_sswap
( int N, float* X, int incX, float* Y, int incY ) ;
FUNCTION: void cblas_scopy
( int N, float* X, int incX, float* Y, int incY ) ;
FUNCTION: void cblas_saxpy
( int N, float alpha, float* X, int incX, float* Y, int incY ) ;
FUNCTION: void cblas_dswap
( int N, double* X, int incX, double* Y, int incY ) ;
FUNCTION: void cblas_dcopy
( int N, double* X, int incX, double* Y, int incY ) ;
FUNCTION: void cblas_daxpy
( int N, double alpha, double* X, int incX, double* Y, int incY ) ;
FUNCTION: void cblas_cswap
( int N, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_ccopy
( int N, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_caxpy
( int N, void* alpha, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_zswap
( int N, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_zcopy
( int N, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_zaxpy
( int N, void* alpha, void* X, int incX, void* Y, int incY ) ;
FUNCTION: void cblas_sscal
( int N, float alpha, float* X, int incX ) ;
FUNCTION: void cblas_dscal
( int N, double alpha, double* X, int incX ) ;
FUNCTION: void cblas_cscal
( int N, void* alpha, void* X, int incX ) ;
FUNCTION: void cblas_zscal
( int N, void* alpha, void* X, int incX ) ;
FUNCTION: void cblas_csscal
( int N, float alpha, void* X, int incX ) ;
FUNCTION: void cblas_zdscal
( int N, double alpha, void* X, int incX ) ;
FUNCTION: void cblas_srotg
( float* a, float* b, float* c, float* s ) ;
FUNCTION: void cblas_srotmg
( float* d1, float* d2, float* b1, float b2, float* P ) ;
FUNCTION: void cblas_srot
( int N, float* X, int incX, float* Y, int incY, float c, float s ) ;
FUNCTION: void cblas_srotm
( int N, float* X, int incX, float* Y, int incY, float* P ) ;
FUNCTION: void cblas_drotg
( double* a, double* b, double* c, double* s ) ;
FUNCTION: void cblas_drotmg
( double* d1, double* d2, double* b1, double b2, double* P ) ;
FUNCTION: void cblas_drot
( int N, double* X, int incX, double* Y, int incY, double c, double s ) ;
FUNCTION: void cblas_drotm
( int N, double* X, int incX, double* Y, int incY, double* P ) ;
! Level 2 BLAS (matrix-vector)
FUNCTION: void cblas_sgemv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
float alpha, float* A, int lda,
float* X, int incX, float beta,
float* Y, int incY ) ;
FUNCTION: void cblas_sgbmv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
int KL, int KU, float alpha,
float* A, int lda, float* X,
int incX, float beta, float* Y, int incY ) ;
FUNCTION: void cblas_strmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, float* A, int lda,
float* X, int incX ) ;
FUNCTION: void cblas_stbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, float* A, int lda,
float* X, int incX ) ;
FUNCTION: void cblas_stpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, float* Ap, float* X, int incX ) ;
FUNCTION: void cblas_strsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, float* A, int lda, float* X,
int incX ) ;
FUNCTION: void cblas_stbsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, float* A, int lda,
float* X, int incX ) ;
FUNCTION: void cblas_stpsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, float* Ap, float* X, int incX ) ;
FUNCTION: void cblas_dgemv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
double alpha, double* A, int lda,
double* X, int incX, double beta,
double* Y, int incY ) ;
FUNCTION: void cblas_dgbmv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
int KL, int KU, double alpha,
double* A, int lda, double* X,
int incX, double beta, double* Y, int incY ) ;
FUNCTION: void cblas_dtrmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, double* A, int lda,
double* X, int incX ) ;
FUNCTION: void cblas_dtbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, double* A, int lda,
double* X, int incX ) ;
FUNCTION: void cblas_dtpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, double* Ap, double* X, int incX ) ;
FUNCTION: void cblas_dtrsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, double* A, int lda, double* X,
int incX ) ;
FUNCTION: void cblas_dtbsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, double* A, int lda,
double* X, int incX ) ;
FUNCTION: void cblas_dtpsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, double* Ap, double* X, int incX ) ;
FUNCTION: void cblas_cgemv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
void* alpha, void* A, int lda,
void* X, int incX, void* beta,
void* Y, int incY ) ;
FUNCTION: void cblas_cgbmv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
int KL, int KU, void* alpha,
void* A, int lda, void* X,
int incX, void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_ctrmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ctbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ctpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* Ap, void* X, int incX ) ;
FUNCTION: void cblas_ctrsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* A, int lda, void* X,
int incX ) ;
FUNCTION: void cblas_ctbsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ctpsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* Ap, void* X, int incX ) ;
FUNCTION: void cblas_zgemv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
void* alpha, void* A, int lda,
void* X, int incX, void* beta,
void* Y, int incY ) ;
FUNCTION: void cblas_zgbmv ( CBLAS_ORDER Order,
CBLAS_TRANSPOSE TransA, int M, int N,
int KL, int KU, void* alpha,
void* A, int lda, void* X,
int incX, void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_ztrmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ztbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ztpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* Ap, void* X, int incX ) ;
FUNCTION: void cblas_ztrsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* A, int lda, void* X,
int incX ) ;
FUNCTION: void cblas_ztbsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, int K, void* A, int lda,
void* X, int incX ) ;
FUNCTION: void cblas_ztpsv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE TransA, CBLAS_DIAG Diag,
int N, void* Ap, void* X, int incX ) ;
FUNCTION: void cblas_ssymv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* A,
int lda, float* X, int incX,
float beta, float* Y, int incY ) ;
FUNCTION: void cblas_ssbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, int K, float alpha, float* A,
int lda, float* X, int incX,
float beta, float* Y, int incY ) ;
FUNCTION: void cblas_sspmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* Ap,
float* X, int incX,
float beta, float* Y, int incY ) ;
FUNCTION: void cblas_sger ( CBLAS_ORDER Order, int M, int N,
float alpha, float* X, int incX,
float* Y, int incY, float* A, int lda ) ;
FUNCTION: void cblas_ssyr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* X,
int incX, float* A, int lda ) ;
FUNCTION: void cblas_sspr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* X,
int incX, float* Ap ) ;
FUNCTION: void cblas_ssyr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* X,
int incX, float* Y, int incY, float* A,
int lda ) ;
FUNCTION: void cblas_sspr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, float* X,
int incX, float* Y, int incY, float* A ) ;
FUNCTION: void cblas_dsymv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* A,
int lda, double* X, int incX,
double beta, double* Y, int incY ) ;
FUNCTION: void cblas_dsbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, int K, double alpha, double* A,
int lda, double* X, int incX,
double beta, double* Y, int incY ) ;
FUNCTION: void cblas_dspmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* Ap,
double* X, int incX,
double beta, double* Y, int incY ) ;
FUNCTION: void cblas_dger ( CBLAS_ORDER Order, int M, int N,
double alpha, double* X, int incX,
double* Y, int incY, double* A, int lda ) ;
FUNCTION: void cblas_dsyr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* X,
int incX, double* A, int lda ) ;
FUNCTION: void cblas_dspr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* X,
int incX, double* Ap ) ;
FUNCTION: void cblas_dsyr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* X,
int incX, double* Y, int incY, double* A,
int lda ) ;
FUNCTION: void cblas_dspr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, double* X,
int incX, double* Y, int incY, double* A ) ;
FUNCTION: void cblas_chemv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, void* alpha, void* A,
int lda, void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_chbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, int K, void* alpha, void* A,
int lda, void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_chpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, void* alpha, void* Ap,
void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_cgeru ( CBLAS_ORDER Order, int M, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_cgerc ( CBLAS_ORDER Order, int M, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_cher ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, void* X, int incX,
void* A, int lda ) ;
FUNCTION: void cblas_chpr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, float alpha, void* X,
int incX, void* A ) ;
FUNCTION: void cblas_cher2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_chpr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* Ap ) ;
FUNCTION: void cblas_zhemv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, void* alpha, void* A,
int lda, void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_zhbmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, int K, void* alpha, void* A,
int lda, void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_zhpmv ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, void* alpha, void* Ap,
void* X, int incX,
void* beta, void* Y, int incY ) ;
FUNCTION: void cblas_zgeru ( CBLAS_ORDER Order, int M, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_zgerc ( CBLAS_ORDER Order, int M, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_zher ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, void* X, int incX,
void* A, int lda ) ;
FUNCTION: void cblas_zhpr ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
int N, double alpha, void* X,
int incX, void* A ) ;
FUNCTION: void cblas_zher2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* A, int lda ) ;
FUNCTION: void cblas_zhpr2 ( CBLAS_ORDER Order, CBLAS_UPLO Uplo, int N,
void* alpha, void* X, int incX,
void* Y, int incY, void* Ap ) ;
! Level 3 BLAS (matrix-matrix)
FUNCTION: void cblas_sgemm ( CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA,
CBLAS_TRANSPOSE TransB, int M, int N,
int K, float alpha, float* A,
int lda, float* B, int ldb,
float beta, float* C, int ldc ) ;
FUNCTION: void cblas_ssymm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
float alpha, float* A, int lda,
float* B, int ldb, float beta,
float* C, int ldc ) ;
FUNCTION: void cblas_ssyrk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
float alpha, float* A, int lda,
float beta, float* C, int ldc ) ;
FUNCTION: void cblas_ssyr2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
float alpha, float* A, int lda,
float* B, int ldb, float beta,
float* C, int ldc ) ;
FUNCTION: void cblas_strmm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
float alpha, float* A, int lda,
float* B, int ldb ) ;
FUNCTION: void cblas_strsm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
float alpha, float* A, int lda,
float* B, int ldb ) ;
FUNCTION: void cblas_dgemm ( CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA,
CBLAS_TRANSPOSE TransB, int M, int N,
int K, double alpha, double* A,
int lda, double* B, int ldb,
double beta, double* C, int ldc ) ;
FUNCTION: void cblas_dsymm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
double alpha, double* A, int lda,
double* B, int ldb, double beta,
double* C, int ldc ) ;
FUNCTION: void cblas_dsyrk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
double alpha, double* A, int lda,
double beta, double* C, int ldc ) ;
FUNCTION: void cblas_dsyr2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
double alpha, double* A, int lda,
double* B, int ldb, double beta,
double* C, int ldc ) ;
FUNCTION: void cblas_dtrmm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
double alpha, double* A, int lda,
double* B, int ldb ) ;
FUNCTION: void cblas_dtrsm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
double alpha, double* A, int lda,
double* B, int ldb ) ;
FUNCTION: void cblas_cgemm ( CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA,
CBLAS_TRANSPOSE TransB, int M, int N,
int K, void* alpha, void* A,
int lda, void* B, int ldb,
void* beta, void* C, int ldc ) ;
FUNCTION: void cblas_csymm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_csyrk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* beta, void* C, int ldc ) ;
FUNCTION: void cblas_csyr2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_ctrmm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb ) ;
FUNCTION: void cblas_ctrsm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb ) ;
FUNCTION: void cblas_zgemm ( CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA,
CBLAS_TRANSPOSE TransB, int M, int N,
int K, void* alpha, void* A,
int lda, void* B, int ldb,
void* beta, void* C, int ldc ) ;
FUNCTION: void cblas_zsymm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_zsyrk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* beta, void* C, int ldc ) ;
FUNCTION: void cblas_zsyr2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_ztrmm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb ) ;
FUNCTION: void cblas_ztrsm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, CBLAS_TRANSPOSE TransA,
CBLAS_DIAG Diag, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb ) ;
FUNCTION: void cblas_chemm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_cherk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
float alpha, void* A, int lda,
float beta, void* C, int ldc ) ;
FUNCTION: void cblas_cher2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* B, int ldb, float beta,
void* C, int ldc ) ;
FUNCTION: void cblas_zhemm ( CBLAS_ORDER Order, CBLAS_SIDE Side,
CBLAS_UPLO Uplo, int M, int N,
void* alpha, void* A, int lda,
void* B, int ldb, void* beta,
void* C, int ldc ) ;
FUNCTION: void cblas_zherk ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
double alpha, void* A, int lda,
double beta, void* C, int ldc ) ;
FUNCTION: void cblas_zher2k ( CBLAS_ORDER Order, CBLAS_UPLO Uplo,
CBLAS_TRANSPOSE Trans, int N, int K,
void* alpha, void* A, int lda,
void* B, int ldb, double beta,
void* C, int ldc ) ;

View File

@ -1 +0,0 @@
Low-level bindings to the C Basic Linear Algebra Subroutines (BLAS) library

View File

@ -0,0 +1 @@
Joe Groff

View File

@ -0,0 +1,520 @@
USING: alien alien.fortran kernel system combinators ;
IN: math.blas.ffi
<<
"blas" {
{ [ os macosx? ] [ "libblas.dylib" "cdecl" add-library ] }
{ [ os windows? ] [ "blas.dll" "cdecl" add-library ] }
[ "libblas.so" "cdecl" add-library ]
} cond
>>
LIBRARY: blas
! Level 1 BLAS (scalar-vector and vector-vector)
FUNCTION: REAL SDSDOT
( INTEGER N, REAL ALPHA, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
FUNCTION: DOUBLE-PRECISION DSDOT
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
FUNCTION: REAL SDOT
( INTEGER N, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
FUNCTION: DOUBLE-PRECISION DDOT
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
FUNCTION: COMPLEX CDOTU
( INTEGER N, COMPLEX(*) X, INTEGER INCX, COMPLEX(*) Y, INTEGER INCY ) ;
FUNCTION: COMPLEX CDOTC
( INTEGER N, COMPLEX(*) X, INTEGER INCX, COMPLEX(*) Y, INTEGER INCY ) ;
FUNCTION: DOUBLE-COMPLEX ZDOTU
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
FUNCTION: DOUBLE-COMPLEX ZDOTC
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
FUNCTION: REAL SNRM2
( INTEGER N, REAL(*) X, INTEGER INCX ) ;
FUNCTION: REAL SASUM
( INTEGER N, REAL(*) X, INTEGER INCX ) ;
FUNCTION: DOUBLE-PRECISION DNRM2
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
FUNCTION: DOUBLE-PRECISION DASUM
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
FUNCTION: REAL SCNRM2
( INTEGER N, COMPLEX(*) X, INTEGER INCX ) ;
FUNCTION: REAL SCASUM
( INTEGER N, COMPLEX(*) X, INTEGER INCX ) ;
FUNCTION: DOUBLE-PRECISION DZNRM2
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
FUNCTION: DOUBLE-PRECISION DZASUM
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
FUNCTION: INTEGER ISAMAX
( INTEGER N, REAL(*) X, INTEGER INCX ) ;
FUNCTION: INTEGER IDAMAX
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
FUNCTION: INTEGER ICAMAX
( INTEGER N, COMPLEX(*) X, INTEGER INCX ) ;
FUNCTION: INTEGER IZAMAX
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: SSWAP
( INTEGER N, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SCOPY
( INTEGER N, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SAXPY
( INTEGER N, REAL ALPHA, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: DSWAP
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DCOPY
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DAXPY
( INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: CSWAP
( INTEGER N, COMPLEX(*) X, INTEGER INCX, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CCOPY
( INTEGER N, COMPLEX(*) X, INTEGER INCX, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CAXPY
( INTEGER N, COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZSWAP
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZCOPY
( INTEGER N, DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZAXPY
( INTEGER N, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: SSCAL
( INTEGER N, REAL ALPHA, REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: DSCAL
( INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: CSCAL
( INTEGER N, COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZSCAL
( INTEGER N, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: CSSCAL
( INTEGER N, REAL ALPHA, COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZDSCAL
( INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: SROTG
( REAL(*) A, REAL(*) B, REAL(*) C, REAL(*) S ) ;
SUBROUTINE: SROTMG
( REAL(*) D1, REAL(*) D2, REAL(*) B1, REAL B2, REAL(*) P ) ;
SUBROUTINE: SROT
( INTEGER N, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY, REAL C, REAL S ) ;
SUBROUTINE: SROTM
( INTEGER N, REAL(*) X, INTEGER INCX, REAL(*) Y, INTEGER INCY, REAL(*) P ) ;
SUBROUTINE: DROTG
( DOUBLE-PRECISION(*) A, DOUBLE-PRECISION(*) B, DOUBLE-PRECISION(*) C, DOUBLE-PRECISION(*) S ) ;
SUBROUTINE: DROTMG
( DOUBLE-PRECISION(*) D1, DOUBLE-PRECISION(*) D2, DOUBLE-PRECISION(*) B1, DOUBLE-PRECISION B2, DOUBLE-PRECISION(*) P ) ;
SUBROUTINE: DROT
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY, DOUBLE-PRECISION C, DOUBLE-PRECISION S ) ;
SUBROUTINE: DROTM
( INTEGER N, DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY, DOUBLE-PRECISION(*) P ) ;
! LEVEL 2 BLAS (MATRIX-VECTOR)
SUBROUTINE: SGEMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL(*) X, INTEGER INCX, REAL BETA,
REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SGBMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
INTEGER KL, INTEGER KU, REAL ALPHA,
REAL(*) A, INTEGER LDA, REAL(*) X,
INTEGER INCX, REAL BETA, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: STRMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, REAL(*) A, INTEGER LDA,
REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: STBMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, REAL(*) A, INTEGER LDA,
REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: STPMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, REAL(*) AP, REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: STRSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, REAL(*) A, INTEGER LDA, REAL(*) X,
INTEGER INCX ) ;
SUBROUTINE: STBSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, REAL(*) A, INTEGER LDA,
REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: STPSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, REAL(*) AP, REAL(*) X, INTEGER INCX ) ;
SUBROUTINE: DGEMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) X, INTEGER INCX, DOUBLE-PRECISION BETA,
DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DGBMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
INTEGER KL, INTEGER KU, DOUBLE-PRECISION ALPHA,
DOUBLE-PRECISION(*) A, INTEGER LDA, DOUBLE-PRECISION(*) X,
INTEGER INCX, DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DTRMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: DTBMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: DTPMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-PRECISION(*) AP, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: DTRSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-PRECISION(*) A, INTEGER LDA, DOUBLE-PRECISION(*) X,
INTEGER INCX ) ;
SUBROUTINE: DTBSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: DTPSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-PRECISION(*) AP, DOUBLE-PRECISION(*) X, INTEGER INCX ) ;
SUBROUTINE: CGEMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) X, INTEGER INCX, COMPLEX BETA,
COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CGBMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
INTEGER KL, INTEGER KU, COMPLEX ALPHA,
COMPLEX(*) A, INTEGER LDA, COMPLEX(*) X,
INTEGER INCX, COMPLEX BETA, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CTRMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: CTBMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: CTPMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, COMPLEX(*) AP, COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: CTRSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, COMPLEX(*) A, INTEGER LDA, COMPLEX(*) X,
INTEGER INCX ) ;
SUBROUTINE: CTBSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: CTPSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, COMPLEX(*) AP, COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZGEMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) X, INTEGER INCX, DOUBLE-COMPLEX BETA,
DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZGBMV ( CHARACTER*1 TRANSA, INTEGER M, INTEGER N,
INTEGER KL, INTEGER KU, DOUBLE-COMPLEX ALPHA,
DOUBLE-COMPLEX(*) A, INTEGER LDA, DOUBLE-COMPLEX(*) X,
INTEGER INCX, DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZTRMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZTBMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZTPMV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-COMPLEX(*) AP, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZTRSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-COMPLEX(*) A, INTEGER LDA, DOUBLE-COMPLEX(*) X,
INTEGER INCX ) ;
SUBROUTINE: ZTBSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, INTEGER K, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: ZTPSV ( CHARACTER*1 UPLO,
CHARACTER*1 TRANSA, CHARACTER*1 DIAG,
INTEGER N, DOUBLE-COMPLEX(*) AP, DOUBLE-COMPLEX(*) X, INTEGER INCX ) ;
SUBROUTINE: SSYMV ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) A,
INTEGER LDA, REAL(*) X, INTEGER INCX,
REAL BETA, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SSBMV ( CHARACTER*1 UPLO,
INTEGER N, INTEGER K, REAL ALPHA, REAL(*) A,
INTEGER LDA, REAL(*) X, INTEGER INCX,
REAL BETA, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SSPMV ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) AP,
REAL(*) X, INTEGER INCX,
REAL BETA, REAL(*) Y, INTEGER INCY ) ;
SUBROUTINE: SGER ( INTEGER M, INTEGER N,
REAL ALPHA, REAL(*) X, INTEGER INCX,
REAL(*) Y, INTEGER INCY, REAL(*) A, INTEGER LDA ) ;
SUBROUTINE: SSYR ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) X,
INTEGER INCX, REAL(*) A, INTEGER LDA ) ;
SUBROUTINE: SSPR ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) X,
INTEGER INCX, REAL(*) AP ) ;
SUBROUTINE: SSYR2 ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) X,
INTEGER INCX, REAL(*) Y, INTEGER INCY, REAL(*) A,
INTEGER LDA ) ;
SUBROUTINE: SSPR2 ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, REAL(*) X,
INTEGER INCX, REAL(*) Y, INTEGER INCY, REAL(*) A ) ;
SUBROUTINE: DSYMV ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A,
INTEGER LDA, DOUBLE-PRECISION(*) X, INTEGER INCX,
DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DSBMV ( CHARACTER*1 UPLO,
INTEGER N, INTEGER K, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A,
INTEGER LDA, DOUBLE-PRECISION(*) X, INTEGER INCX,
DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DSPMV ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) AP,
DOUBLE-PRECISION(*) X, INTEGER INCX,
DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) Y, INTEGER INCY ) ;
SUBROUTINE: DGER ( INTEGER M, INTEGER N,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X, INTEGER INCX,
DOUBLE-PRECISION(*) Y, INTEGER INCY, DOUBLE-PRECISION(*) A, INTEGER LDA ) ;
SUBROUTINE: DSYR ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X,
INTEGER INCX, DOUBLE-PRECISION(*) A, INTEGER LDA ) ;
SUBROUTINE: DSPR ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X,
INTEGER INCX, DOUBLE-PRECISION(*) AP ) ;
SUBROUTINE: DSYR2 ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X,
INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY, DOUBLE-PRECISION(*) A,
INTEGER LDA ) ;
SUBROUTINE: DSPR2 ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) X,
INTEGER INCX, DOUBLE-PRECISION(*) Y, INTEGER INCY, DOUBLE-PRECISION(*) A ) ;
SUBROUTINE: CHEMV ( CHARACTER*1 UPLO,
INTEGER N, COMPLEX ALPHA, COMPLEX(*) A,
INTEGER LDA, COMPLEX(*) X, INTEGER INCX,
COMPLEX BETA, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CHBMV ( CHARACTER*1 UPLO,
INTEGER N, INTEGER K, COMPLEX ALPHA, COMPLEX(*) A,
INTEGER LDA, COMPLEX(*) X, INTEGER INCX,
COMPLEX BETA, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CHPMV ( CHARACTER*1 UPLO,
INTEGER N, COMPLEX ALPHA, COMPLEX(*) AP,
COMPLEX(*) X, INTEGER INCX,
COMPLEX BETA, COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: CGERU ( INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX,
COMPLEX(*) Y, INTEGER INCY, COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: CGERC ( INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX,
COMPLEX(*) Y, INTEGER INCY, COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: CHER ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, COMPLEX(*) X, INTEGER INCX,
COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: CHPR ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, COMPLEX(*) X,
INTEGER INCX, COMPLEX(*) A ) ;
SUBROUTINE: CHER2 ( CHARACTER*1 UPLO, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX,
COMPLEX(*) Y, INTEGER INCY, COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: CHPR2 ( CHARACTER*1 UPLO, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) X, INTEGER INCX,
COMPLEX(*) Y, INTEGER INCY, COMPLEX(*) AP ) ;
SUBROUTINE: ZHEMV ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A,
INTEGER LDA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZHBMV ( CHARACTER*1 UPLO,
INTEGER N, INTEGER K, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A,
INTEGER LDA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZHPMV ( CHARACTER*1 UPLO,
INTEGER N, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) AP,
DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) Y, INTEGER INCY ) ;
SUBROUTINE: ZGERU ( INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX(*) Y, INTEGER INCY, DOUBLE-COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: ZGERC ( INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX(*) Y, INTEGER INCY, DOUBLE-COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: ZHER ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: ZHPR ( CHARACTER*1 UPLO,
INTEGER N, REAL ALPHA, DOUBLE-COMPLEX(*) X,
INTEGER INCX, DOUBLE-COMPLEX(*) A ) ;
SUBROUTINE: ZHER2 ( CHARACTER*1 UPLO, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX(*) Y, INTEGER INCY, DOUBLE-COMPLEX(*) A, INTEGER LDA ) ;
SUBROUTINE: ZHPR2 ( CHARACTER*1 UPLO, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) X, INTEGER INCX,
DOUBLE-COMPLEX(*) Y, INTEGER INCY, DOUBLE-COMPLEX(*) AP ) ;
! LEVEL 3 BLAS (MATRIX-MATRIX)
SUBROUTINE: SGEMM ( CHARACTER*1 TRANSA,
CHARACTER*1 TRANSB, INTEGER M, INTEGER N,
INTEGER K, REAL ALPHA, REAL(*) A,
INTEGER LDA, REAL(*) B, INTEGER LDB,
REAL BETA, REAL(*) C, INTEGER LDC ) ;
SUBROUTINE: SSYMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL(*) B, INTEGER LDB, REAL BETA,
REAL(*) C, INTEGER LDC ) ;
SUBROUTINE: SSYRK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL BETA, REAL(*) C, INTEGER LDC ) ;
SUBROUTINE: SSYR2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL(*) B, INTEGER LDB, REAL BETA,
REAL(*) C, INTEGER LDC ) ;
SUBROUTINE: STRMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL(*) B, INTEGER LDB ) ;
SUBROUTINE: STRSM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
REAL ALPHA, REAL(*) A, INTEGER LDA,
REAL(*) B, INTEGER LDB ) ;
SUBROUTINE: DGEMM ( CHARACTER*1 TRANSA,
CHARACTER*1 TRANSB, INTEGER M, INTEGER N,
INTEGER K, DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A,
INTEGER LDA, DOUBLE-PRECISION(*) B, INTEGER LDB,
DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) C, INTEGER LDC ) ;
SUBROUTINE: DSYMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) B, INTEGER LDB, DOUBLE-PRECISION BETA,
DOUBLE-PRECISION(*) C, INTEGER LDC ) ;
SUBROUTINE: DSYRK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION BETA, DOUBLE-PRECISION(*) C, INTEGER LDC ) ;
SUBROUTINE: DSYR2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) B, INTEGER LDB, DOUBLE-PRECISION BETA,
DOUBLE-PRECISION(*) C, INTEGER LDC ) ;
SUBROUTINE: DTRMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) B, INTEGER LDB ) ;
SUBROUTINE: DTRSM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
DOUBLE-PRECISION ALPHA, DOUBLE-PRECISION(*) A, INTEGER LDA,
DOUBLE-PRECISION(*) B, INTEGER LDB ) ;
SUBROUTINE: CGEMM ( CHARACTER*1 TRANSA,
CHARACTER*1 TRANSB, INTEGER M, INTEGER N,
INTEGER K, COMPLEX ALPHA, COMPLEX(*) A,
INTEGER LDA, COMPLEX(*) B, INTEGER LDB,
COMPLEX BETA, COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CSYMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB, COMPLEX BETA,
COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CSYRK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX BETA, COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CSYR2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB, COMPLEX BETA,
COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CTRMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB ) ;
SUBROUTINE: CTRSM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB ) ;
SUBROUTINE: ZGEMM ( CHARACTER*1 TRANSA,
CHARACTER*1 TRANSB, INTEGER M, INTEGER N,
INTEGER K, DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A,
INTEGER LDA, DOUBLE-COMPLEX(*) B, INTEGER LDB,
DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZSYMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB, DOUBLE-COMPLEX BETA,
DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZSYRK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX BETA, DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZSYR2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB, DOUBLE-COMPLEX BETA,
DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZTRMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB ) ;
SUBROUTINE: ZTRSM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, CHARACTER*1 TRANSA,
CHARACTER*1 DIAG, INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB ) ;
SUBROUTINE: CHEMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB, COMPLEX BETA,
COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CHERK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
REAL ALPHA, COMPLEX(*) A, INTEGER LDA,
REAL BETA, COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: CHER2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
COMPLEX ALPHA, COMPLEX(*) A, INTEGER LDA,
COMPLEX(*) B, INTEGER LDB, REAL BETA,
COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZHEMM ( CHARACTER*1 SIDE,
CHARACTER*1 UPLO, INTEGER M, INTEGER N,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB, DOUBLE-COMPLEX BETA,
DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZHERK ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
REAL ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
REAL BETA, DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;
SUBROUTINE: ZHER2K ( CHARACTER*1 UPLO,
CHARACTER*1 TRANS, INTEGER N, INTEGER K,
DOUBLE-COMPLEX ALPHA, DOUBLE-COMPLEX(*) A, INTEGER LDA,
DOUBLE-COMPLEX(*) B, INTEGER LDB, REAL BETA,
DOUBLE-COMPLEX(*) C, INTEGER LDC ) ;

View File

@ -0,0 +1 @@
Low-level bindings to the Basic Linear Algebra Subroutines (BLAS) library

View File

@ -1,2 +1,3 @@
math
bindings
fortran

View File

@ -8,40 +8,40 @@ ARTICLE: "math.blas-summary" "Basic Linear Algebra Subroutines (BLAS) interface"
{ $subsection "math.blas.vectors" }
"Vector-matrix and matrix-matrix operations are available in the " { $vocab-link "math.blas.matrices" } " vocabulary:"
{ $subsection "math.blas.matrices" }
"The low-level BLAS C interface can be accessed directly through the " { $vocab-link "math.blas.cblas" } " vocabulary." ;
"The low-level BLAS Fortran interface can be accessed directly through the " { $vocab-link "math.blas.ffi" } " vocabulary." ;
ARTICLE: "math.blas-types" "BLAS interface types"
"BLAS vectors come in single- and double-precision, real and complex flavors:"
{ $subsection float-blas-vector }
{ $subsection double-blas-vector }
{ $subsection float-complex-blas-vector }
{ $subsection double-complex-blas-vector }
{ $subsection complex-float-blas-vector }
{ $subsection complex-double-blas-vector }
"These vector types all follow the " { $link sequence } " protocol. In addition, there are corresponding types for matrix data:"
{ $subsection float-blas-matrix }
{ $subsection double-blas-matrix }
{ $subsection float-complex-blas-matrix }
{ $subsection double-complex-blas-matrix }
{ $subsection complex-float-blas-matrix }
{ $subsection complex-double-blas-matrix }
"There are BOA constructors for all vector and matrix types, which provide the most flexibility in specifying memory layout:"
{ $subsection <float-blas-vector> }
{ $subsection <double-blas-vector> }
{ $subsection <float-complex-blas-vector> }
{ $subsection <double-complex-blas-vector> }
{ $subsection <complex-float-blas-vector> }
{ $subsection <complex-double-blas-vector> }
{ $subsection <float-blas-matrix> }
{ $subsection <double-blas-matrix> }
{ $subsection <float-complex-blas-matrix> }
{ $subsection <double-complex-blas-matrix> }
{ $subsection <complex-float-blas-matrix> }
{ $subsection <complex-double-blas-matrix> }
"For the simple case of creating a dense, zero-filled vector or matrix, simple empty object constructors are provided:"
{ $subsection <empty-vector> }
{ $subsection <empty-matrix> }
"BLAS vectors and matrices can also be constructed from other Factor sequences:"
{ $subsection >float-blas-vector }
{ $subsection >double-blas-vector }
{ $subsection >float-complex-blas-vector }
{ $subsection >double-complex-blas-vector }
{ $subsection >complex-float-blas-vector }
{ $subsection >complex-double-blas-vector }
{ $subsection >float-blas-matrix }
{ $subsection >double-blas-matrix }
{ $subsection >float-complex-blas-matrix }
{ $subsection >double-complex-blas-matrix } ;
{ $subsection >complex-float-blas-matrix }
{ $subsection >complex-double-blas-matrix } ;
ARTICLE: "math.blas.matrices" "BLAS interface matrix operations"
"Transposing and slicing matrices:"
@ -87,8 +87,8 @@ HELP: blas-matrix-base
{ $list
{ { $link float-blas-matrix } }
{ { $link double-blas-matrix } }
{ { $link float-complex-blas-matrix } }
{ { $link double-complex-blas-matrix } }
{ { $link complex-float-blas-matrix } }
{ { $link complex-double-blas-matrix } }
}
"All of these subclasses share the same tuple layout:"
{ $list
@ -104,14 +104,14 @@ HELP: float-blas-matrix
{ $class-description "A matrix of single-precision floating-point values. For details on the tuple layout, see " { $link blas-matrix-base } "." } ;
HELP: double-blas-matrix
{ $class-description "A matrix of double-precision floating-point values. For details on the tuple layout, see " { $link blas-matrix-base } "." } ;
HELP: float-complex-blas-matrix
HELP: complex-float-blas-matrix
{ $class-description "A matrix of single-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-matrix-base } "." } ;
HELP: double-complex-blas-matrix
HELP: complex-double-blas-matrix
{ $class-description "A matrix of double-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-matrix-base } "." } ;
{
float-blas-matrix double-blas-matrix float-complex-blas-matrix double-complex-blas-matrix
float-blas-vector double-blas-vector float-complex-blas-vector double-complex-blas-vector
float-blas-matrix double-blas-matrix complex-float-blas-matrix complex-double-blas-matrix
float-blas-vector double-blas-vector complex-float-blas-vector complex-double-blas-vector
} related-words
HELP: Mwidth
@ -272,7 +272,7 @@ HELP: cmatrix{
{ 0.0 0.0 -1.0 3.0 }
{ 0.0 0.0 0.0 C{ 0.0 -1.0 } }
} "> }
{ $description "Construct a literal " { $link float-complex-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ;
{ $description "Construct a literal " { $link complex-float-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ;
HELP: zmatrix{
{ $syntax <" zmatrix{
@ -281,7 +281,7 @@ HELP: zmatrix{
{ 0.0 0.0 -1.0 3.0 }
{ 0.0 0.0 0.0 C{ 0.0 -1.0 } }
} "> }
{ $description "Construct a literal " { $link double-complex-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ;
{ $description "Construct a literal " { $link complex-double-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ;
{
POSTPONE: smatrix{ POSTPONE: dmatrix{

View File

@ -1,11 +1,13 @@
USING: accessors alien alien.c-types arrays byte-arrays combinators
combinators.short-circuit fry kernel locals macros
math math.blas.cblas math.blas.vectors math.blas.vectors.private
math math.blas.ffi math.blas.vectors math.blas.vectors.private
math.complex math.functions math.order functors words
sequences sequences.merged sequences.private shuffle
specialized-arrays.direct.float specialized-arrays.direct.double
specialized-arrays.float specialized-arrays.double
parser prettyprint.backend prettyprint.custom ;
specialized-arrays.direct.complex-float specialized-arrays.direct.complex-double
specialized-arrays.complex-float specialized-arrays.complex-double
parser prettyprint.backend prettyprint.custom ascii ;
IN: math.blas.matrices
TUPLE: blas-matrix-base underlying ld rows cols transpose ;
@ -25,7 +27,7 @@ GENERIC: n*M.M+n*M! ( alpha A B beta C -- C=alpha*A.B+beta*C )
<PRIVATE
: (blas-transpose) ( matrix -- integer )
transpose>> [ CblasTrans ] [ CblasNoTrans ] if ;
transpose>> [ "T" ] [ "N" ] if ;
GENERIC: (blas-matrix-like) ( data ld rows cols transpose exemplar -- matrix )
@ -38,73 +40,70 @@ GENERIC: (blas-matrix-like) ( data ld rows cols transpose exemplar -- matrix )
unless ;
:: (prepare-gemv)
( alpha A x beta y >c-arg -- order A-trans m n alpha A-data A-ld x-data x-inc beta y-data y-inc
y )
( alpha A x beta y -- A-trans m n alpha A-data A-ld x-data x-inc beta y-data y-inc
y )
A x y (validate-gemv)
CblasColMajor
A (blas-transpose)
A rows>>
A cols>>
alpha >c-arg call
A underlying>>
alpha
A
A ld>>
x underlying>>
x
x inc>>
beta >c-arg call
y underlying>>
beta
y
y inc>>
y ; inline
: (validate-ger) ( x y A -- )
{
[ nip [ length>> ] [ Mheight ] bi* = ]
[ nipd [ length>> ] [ Mwidth ] bi* = ]
[ [ length>> ] [ drop ] [ Mheight ] tri* = ]
[ [ drop ] [ length>> ] [ Mwidth ] tri* = ]
} 3&&
[ "Mismatched vertices and matrix in vector outer product" throw ]
unless ;
:: (prepare-ger)
( alpha x y A >c-arg -- order m n alpha x-data x-inc y-data y-inc A-data A-ld
A )
( alpha x y A -- m n alpha x-data x-inc y-data y-inc A-data A-ld
A )
x y A (validate-ger)
CblasColMajor
A rows>>
A cols>>
alpha >c-arg call
x underlying>>
alpha
x
x inc>>
y underlying>>
y
y inc>>
A underlying>>
A
A ld>>
A f >>transpose ; inline
: (validate-gemm) ( A B C -- )
{
[ drop [ Mwidth ] [ Mheight ] bi* = ]
[ nip [ Mheight ] bi@ = ]
[ nipd [ Mwidth ] bi@ = ]
[ [ Mwidth ] [ Mheight ] [ drop ] tri* = ]
[ [ Mheight ] [ drop ] [ Mheight ] tri* = ]
[ [ drop ] [ Mwidth ] [ Mwidth ] tri* = ]
} 3&&
[ "Mismatched matrices in matrix multiplication" throw ]
unless ;
:: (prepare-gemm)
( alpha A B beta C >c-arg -- order A-trans B-trans m n k alpha A-data A-ld B-data B-ld beta C-data C-ld
C )
( alpha A B beta C -- A-trans B-trans m n k alpha A-data A-ld B-data B-ld beta C-data C-ld
C )
A B C (validate-gemm)
CblasColMajor
A (blas-transpose)
B (blas-transpose)
C rows>>
C cols>>
A Mwidth
alpha >c-arg call
A underlying>>
alpha
A
A ld>>
B underlying>>
B
B ld>>
beta >c-arg call
C underlying>>
beta
C
C ld>>
C f >>transpose ; inline
@ -250,16 +249,18 @@ FUNCTOR: (define-blas-matrix) ( TYPE T U C -- )
VECTOR IS ${TYPE}-blas-vector
<VECTOR> IS <${TYPE}-blas-vector>
>ARRAY IS >${TYPE}-array
TYPE>ARG IS ${TYPE}>arg
XGEMV IS cblas_${T}gemv
XGEMM IS cblas_${T}gemm
XGERU IS cblas_${T}ger${U}
XGERC IS cblas_${T}ger${C}
XGEMV IS ${T}GEMV
XGEMM IS ${T}GEMM
XGERU IS ${T}GER${U}
XGERC IS ${T}GER${C}
MATRIX DEFINES-CLASS ${TYPE}-blas-matrix
<MATRIX> DEFINES <${TYPE}-blas-matrix>
>MATRIX DEFINES >${TYPE}-blas-matrix
XMATRIX{ DEFINES ${T}matrix{
t [ T >lower ]
XMATRIX{ DEFINES ${t}matrix{
WHERE
@ -277,21 +278,16 @@ M: MATRIX (blas-vector-like)
drop <VECTOR> ;
: >MATRIX ( arrays -- matrix )
[ >ARRAY underlying>> ] (>matrix)
<MATRIX> ;
[ >ARRAY underlying>> ] (>matrix) <MATRIX> ;
M: VECTOR n*M.V+n*V!
[ TYPE>ARG ] (prepare-gemv)
[ XGEMV ] dip ;
(prepare-gemv) [ XGEMV ] dip ;
M: MATRIX n*M.M+n*M!
[ TYPE>ARG ] (prepare-gemm)
[ XGEMM ] dip ;
(prepare-gemm) [ XGEMM ] dip ;
M: MATRIX n*V(*)V+M!
[ TYPE>ARG ] (prepare-ger)
[ XGERU ] dip ;
(prepare-ger) [ XGERU ] dip ;
M: MATRIX n*V(*)Vconj+M!
[ TYPE>ARG ] (prepare-ger)
[ XGERC ] dip ;
(prepare-ger) [ XGERC ] dip ;
: XMATRIX{ \ } [ >MATRIX ] parse-literal ; parsing
@ -304,12 +300,12 @@ M: MATRIX pprint-delims
: define-real-blas-matrix ( TYPE T -- )
"" "" (define-blas-matrix) ;
: define-complex-blas-matrix ( TYPE T -- )
"u" "c" (define-blas-matrix) ;
"U" "C" (define-blas-matrix) ;
"float" "s" define-real-blas-matrix
"double" "d" define-real-blas-matrix
"float-complex" "c" define-complex-blas-matrix
"double-complex" "z" define-complex-blas-matrix
"float" "S" define-real-blas-matrix
"double" "D" define-real-blas-matrix
"complex-float" "C" define-complex-blas-matrix
"complex-double" "Z" define-complex-blas-matrix
>>

View File

@ -37,8 +37,8 @@ HELP: blas-vector-base
{ $list
{ { $link float-blas-vector } }
{ { $link double-blas-vector } }
{ { $link float-complex-blas-vector } }
{ { $link double-complex-blas-vector } }
{ { $link complex-float-blas-vector } }
{ { $link complex-double-blas-vector } }
}
"All of these subclasses share the same tuple layout:"
{ $list
@ -51,10 +51,10 @@ HELP: float-blas-vector
{ $class-description "A vector of single-precision floating-point values. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: double-blas-vector
{ $class-description "A vector of double-precision floating-point values. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: float-complex-blas-vector
{ $class-description "A vector of single-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: double-complex-blas-vector
{ $class-description "A vector of single-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: complex-float-blas-vector
{ $class-description "A vector of single-precision floating-point complex values. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: complex-double-blas-vector
{ $class-description "A vector of double-precision floating-point complex values. For details on the tuple layout, see " { $link blas-vector-base } "." } ;
HELP: n*V+V!
{ $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "y=alpha*x+y" blas-vector-base } }
@ -145,11 +145,11 @@ HELP: dvector{
HELP: cvector{
{ $syntax "cvector{ 1.0 -2.0 C{ 3.0 -1.0 } }" }
{ $description "Construct a literal " { $link float-complex-blas-vector } "." } ;
{ $description "Construct a literal " { $link complex-float-blas-vector } "." } ;
HELP: zvector{
{ $syntax "dvector{ 1.0 -2.0 C{ 3.0 -1.0 } }" }
{ $description "Construct a literal " { $link double-complex-blas-vector } "." } ;
{ $description "Construct a literal " { $link complex-double-blas-vector } "." } ;
{
POSTPONE: svector{ POSTPONE: dvector{

View File

@ -1,10 +1,12 @@
USING: accessors alien alien.c-types arrays byte-arrays combinators
combinators.short-circuit fry kernel math math.blas.cblas
math.complex math.functions math.order sequences.complex
sequences.complex-components sequences sequences.private
USING: accessors alien alien.c-types arrays ascii byte-arrays combinators
combinators.short-circuit fry kernel math math.blas.ffi
math.complex math.functions math.order sequences sequences.private
functors words locals parser prettyprint.backend prettyprint.custom
specialized-arrays.float specialized-arrays.double
specialized-arrays.direct.float specialized-arrays.direct.double ;
specialized-arrays.direct.float specialized-arrays.direct.double
specialized-arrays.complex-float specialized-arrays.complex-double
specialized-arrays.direct.complex-float
specialized-arrays.direct.complex-double ;
IN: math.blas.vectors
TUPLE: blas-vector-base underlying length inc ;
@ -31,7 +33,7 @@ GENERIC: (blas-direct-array) ( blas-vector -- direct-array )
: shorter-length ( v1 v2 -- length )
[ length>> ] bi@ min ; inline
: data-and-inc ( v -- data inc )
[ underlying>> ] [ inc>> ] bi ; inline
[ ] [ inc>> ] bi ; inline
: datas-and-incs ( v1 v2 -- v1-data v1-inc v2-data v2-inc )
[ data-and-inc ] bi@ ; inline
@ -130,15 +132,20 @@ FUNCTOR: (define-blas-vector) ( TYPE T -- )
<DIRECT-ARRAY> IS <direct-${TYPE}-array>
>ARRAY IS >${TYPE}-array
XCOPY IS cblas_${T}copy
XSWAP IS cblas_${T}swap
IXAMAX IS cblas_i${T}amax
XCOPY IS ${T}COPY
XSWAP IS ${T}SWAP
IXAMAX IS I${T}AMAX
VECTOR DEFINES-CLASS ${TYPE}-blas-vector
<VECTOR> DEFINES <${TYPE}-blas-vector>
>VECTOR DEFINES >${TYPE}-blas-vector
XVECTOR{ DEFINES ${T}vector{
t [ T >lower ]
XVECTOR{ DEFINES ${t}vector{
XAXPY IS ${T}AXPY
XSCAL IS ${T}SCAL
WHERE
@ -157,7 +164,7 @@ M: VECTOR element-type
M: VECTOR Vswap
(prepare-swap) [ XSWAP ] 2dip ;
M: VECTOR Viamax
(prepare-nrm2) IXAMAX ;
(prepare-nrm2) IXAMAX 1- ;
M: VECTOR (blas-vector-like)
drop <VECTOR> ;
@ -167,6 +174,11 @@ M: VECTOR (blas-direct-array)
[ [ length>> ] [ inc>> ] bi * ] bi
<DIRECT-ARRAY> ;
M: VECTOR n*V+V!
(prepare-axpy) [ XAXPY ] dip ;
M: VECTOR n*V!
(prepare-scal) [ XSCAL ] dip ;
: XVECTOR{ \ } [ >VECTOR ] parse-literal ; parsing
M: VECTOR pprint-delims
@ -178,11 +190,9 @@ M: VECTOR pprint-delims
FUNCTOR: (define-real-blas-vector) ( TYPE T -- )
VECTOR IS ${TYPE}-blas-vector
XDOT IS cblas_${T}dot
XNRM2 IS cblas_${T}nrm2
XASUM IS cblas_${T}asum
XAXPY IS cblas_${T}axpy
XSCAL IS cblas_${T}scal
XDOT IS ${T}DOT
XNRM2 IS ${T}NRM2
XASUM IS ${T}ASUM
WHERE
@ -194,33 +204,6 @@ M: VECTOR Vnorm
(prepare-nrm2) XNRM2 ;
M: VECTOR Vasum
(prepare-nrm2) XASUM ;
M: VECTOR n*V+V!
(prepare-axpy) [ XAXPY ] dip ;
M: VECTOR n*V!
(prepare-scal) [ XSCAL ] dip ;
;FUNCTOR
FUNCTOR: (define-complex-helpers) ( TYPE -- )
<DIRECT-COMPLEX-ARRAY> DEFINES <direct-${TYPE}-complex-array>
>COMPLEX-ARRAY DEFINES >${TYPE}-complex-array
ARG>COMPLEX DEFINES arg>${TYPE}-complex
COMPLEX>ARG DEFINES ${TYPE}-complex>arg
<DIRECT-ARRAY> IS <direct-${TYPE}-array>
>ARRAY IS >${TYPE}-array
WHERE
: <DIRECT-COMPLEX-ARRAY> ( alien len -- sequence )
1 shift <DIRECT-ARRAY> <complex-sequence> ;
: >COMPLEX-ARRAY ( sequence -- sequence )
<complex-components> >ARRAY ;
: COMPLEX>ARG ( complex -- alien )
>rect 2array >ARRAY underlying>> ;
: ARG>COMPLEX ( alien -- complex )
2 <DIRECT-ARRAY> first2 rect> ;
;FUNCTOR
@ -228,35 +211,21 @@ WHERE
FUNCTOR: (define-complex-blas-vector) ( TYPE C S -- )
VECTOR IS ${TYPE}-blas-vector
XDOTU_SUB IS cblas_${C}dotu_sub
XDOTC_SUB IS cblas_${C}dotc_sub
XXNRM2 IS cblas_${S}${C}nrm2
XXASUM IS cblas_${S}${C}asum
XAXPY IS cblas_${C}axpy
XSCAL IS cblas_${C}scal
TYPE>ARG IS ${TYPE}>arg
ARG>TYPE IS arg>${TYPE}
XDOTU IS ${C}DOTU
XDOTC IS ${C}DOTC
XXNRM2 IS ${S}${C}NRM2
XXASUM IS ${S}${C}ASUM
WHERE
M: VECTOR V.
(prepare-dot) TYPE <c-object>
[ XDOTU_SUB ] keep
ARG>TYPE ;
(prepare-dot) XDOTU ;
M: VECTOR V.conj
(prepare-dot) TYPE <c-object>
[ XDOTC_SUB ] keep
ARG>TYPE ;
(prepare-dot) XDOTC ;
M: VECTOR Vnorm
(prepare-nrm2) XXNRM2 ;
M: VECTOR Vasum
(prepare-nrm2) XXASUM ;
M: VECTOR n*V+V!
[ TYPE>ARG ] 2dip
(prepare-axpy) [ XAXPY ] dip ;
M: VECTOR n*V!
[ TYPE>ARG ] dip
(prepare-scal) [ XSCAL ] dip ;
;FUNCTOR
@ -264,16 +233,14 @@ M: VECTOR n*V!
: define-real-blas-vector ( TYPE T -- )
[ (define-blas-vector) ]
[ (define-real-blas-vector) ] 2bi ;
:: define-complex-blas-vector ( TYPE C S -- )
TYPE (define-complex-helpers)
TYPE "-complex" append
[ C (define-blas-vector) ]
[ C S (define-complex-blas-vector) ] bi ;
: define-complex-blas-vector ( TYPE C S -- )
[ drop (define-blas-vector) ]
[ (define-complex-blas-vector) ] 3bi ;
"float" "s" define-real-blas-vector
"double" "d" define-real-blas-vector
"float" "c" "s" define-complex-blas-vector
"double" "z" "d" define-complex-blas-vector
"float" "S" define-real-blas-vector
"double" "D" define-real-blas-vector
"complex-float" "C" "S" define-complex-blas-vector
"complex-double" "Z" "D" define-complex-blas-vector
>>

View File

@ -1,6 +1,6 @@
! Copyright (C) 2008 Doug Coleman.
! See http://factorcode.org/license.txt for BSD license.
USING: arrays kernel make math math.order math.vectors sequences shuffle
USING: arrays kernel make math math.order math.vectors sequences
splitting vectors ;
IN: math.polynomials
@ -75,7 +75,7 @@ PRIVATE>
PRIVATE>
: pgcd ( p q -- a d )
swap V{ 0 } clone V{ 1 } clone 2swap (pgcd) [ >array ] bi@ ;
[ V{ 0 } clone V{ 1 } clone ] 2dip swap (pgcd) [ >array ] bi@ ;
: pdiff ( p -- p' )
dup length v* { 0 } ?head drop ;

View File

@ -2,8 +2,7 @@
! See http://factorcode.org/license.txt for BSD license.
USING: accessors assocs combinators kernel math
quotations sequences regexp.parser regexp.classes fry arrays
combinators.short-circuit regexp.utils prettyprint regexp.nfa
shuffle ;
combinators.short-circuit regexp.utils prettyprint regexp.nfa ;
IN: regexp.traversal
TUPLE: dfa-traverser
@ -170,7 +169,7 @@ M: capture-group-off flag-action ( dfa-traverser flag -- )
] [ drop ] if ;
: match-default ( transition from-state table -- to-state/f )
nipd transitions>> at t swap at ;
[ drop ] 2dip transitions>> at t swap at ;
: match-transition ( obj from-state dfa -- to-state/f )
{ [ match-literal ] [ match-class ] [ match-default ] } 3|| ;

View File

@ -1,5 +1,5 @@
USING: shuffle tools.test ;
[ 8 ] [ 5 6 7 8 3nip ] unit-test
[ 3 1 2 3 ] [ 1 2 3 tuckd ] unit-test
[ 1 2 3 4 ] [ 3 4 1 2 2swap ] unit-test
[ 4 2 3 ] [ 1 2 3 4 shuffle( a b c d -- d b c ) ] unit-test

View File

@ -1,19 +1,29 @@
! Copyright (C) 2007 Chris Double, Doug Coleman.
! See http://factorcode.org/license.txt for BSD license.
USING: kernel generalizations ;
USING: accessors assocs combinators effects.parser generalizations
hashtables kernel locals locals.backend macros make math
parser sequences ;
IN: shuffle
<PRIVATE
: >index-assoc ( sequence -- assoc )
dup length zip >hashtable ;
PRIVATE>
MACRO: shuffle-effect ( effect -- )
[ out>> ] [ in>> >index-assoc ] bi
[
[ nip assoc-size , \ narray , ]
[ [ at \ swap \ nth [ ] 3sequence ] curry map , \ cleave , ] 2bi
] [ ] make ;
: shuffle(
")" parse-effect parsed \ shuffle-effect parsed ; parsing
: 2swap ( x y z t -- z t x y ) 2 2 mnswap ; inline
: nipd ( a b c -- b c ) rot drop ; inline
: 3nip ( a b c d -- d ) 3 nnip ; inline
: 4nip ( a b c d e -- e ) 4 nnip ; inline
: 4dup ( a b c d -- a b c d a b c d ) 4 ndup ; inline
: 4drop ( a b c d -- ) 3drop drop ; inline
: tuckd ( x y z -- z x y z ) 2 ntuck ; inline

View File

@ -0,0 +1,13 @@
USING: kernel sequences specialized-arrays.complex-double tools.test ;
IN: specialized-arrays.complex-double.tests
[ C{ 3.0 2.0 } ]
[ complex-double-array{ 1.0 C{ 3.0 2.0 } 5.0 } second ] unit-test
[ C{ 1.0 0.0 } ]
[ complex-double-array{ 1.0 C{ 3.0 2.0 } 5.0 } first ] unit-test
[ complex-double-array{ 1.0 C{ 6.0 -7.0 } 5.0 } ] [
complex-double-array{ 1.0 C{ 3.0 2.0 } 5.0 }
dup [ C{ 6.0 -7.0 } 1 ] dip set-nth
] unit-test

View File

@ -0,0 +1,4 @@
USE: specialized-arrays.functor
IN: specialized-arrays.complex-double
<< "complex-double" define-array >>

View File

@ -0,0 +1,4 @@
USE: specialized-arrays.functor
IN: specialized-arrays.complex-float
<< "complex-float" define-array >>

View File

@ -0,0 +1,4 @@
USING: specialized-arrays.complex-double specialized-arrays.direct.functor ;
IN: specialized-arrays.direct.complex-double
<< "complex-double" define-direct-array >>

View File

@ -0,0 +1,4 @@
USING: specialized-arrays.complex-float specialized-arrays.direct.functor ;
IN: specialized-arrays.direct.complex-float
<< "complex-float" define-direct-array >>

View File

@ -14,7 +14,7 @@ A' IS ${T}-array
A DEFINES-CLASS direct-${T}-array
<A> DEFINES <${A}>
NTH [ T dup c-getter array-accessor ]
NTH [ T dup c-type-getter-boxer array-accessor ]
SET-NTH [ T dup c-setter array-accessor ]
WHERE

View File

@ -22,7 +22,7 @@ A DEFINES-CLASS ${T}-array
byte-array>A DEFINES byte-array>${A}
A{ DEFINES ${A}{
NTH [ T dup c-getter array-accessor ]
NTH [ T dup c-type-getter-boxer array-accessor ]
SET-NTH [ T dup c-setter array-accessor ]
WHERE

View File

@ -126,11 +126,11 @@ TAG: int xml>item children>number ;
TAG: double xml>item children>number ;
TAG: boolean xml>item
dup children>string {
{ [ dup "1" = ] [ 2drop t ] }
{ [ "0" = ] [ drop f ] }
children>string {
{ "1" [ t ] }
{ "0" [ f ] }
[ "Bad boolean" server-error ]
} cond ;
} case ;
: unstruct-member ( tag -- )
children-tags first2

View File

@ -149,8 +149,8 @@ TUPLE: and-parser parsers ;
[ parsed>> ] dip
[ parsed>> 2array ] keep
unparsed>> <parse-result>
] lazy-map-with
] lazy-map-with lconcat ;
] with lazy-map
] with lazy-map lconcat ;
M: and-parser parse ( input parser -- list )
#! Parse 'input' by sequentially combining the
@ -173,7 +173,7 @@ M: or-parser parse ( input parser1 -- list )
#! of parser1 and parser2 being applied to the same
#! input. This implements the choice parsing operator.
parsers>> 0 swap seq>list
[ parse ] lazy-map-with lconcat ;
[ parse ] with lazy-map lconcat ;
: trim-head-slice ( string -- string )
#! Return a new string without any leading whitespace
@ -218,7 +218,7 @@ M: apply-parser parse ( input parser -- result )
-rot parse [
[ parsed>> swap call ] keep
unparsed>> <parse-result>
] lazy-map-with ;
] with lazy-map ;
TUPLE: some-parser p1 ;

View File

@ -1,6 +1,6 @@
! Copyright (c) 2007, 2008 Aaron Schaefer, Alexander Solovyov, Vishal Talwar.
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math sequences shuffle ;
USING: kernel math sequences ;
IN: project-euler.002
! http://projecteuler.net/index.php?section=problems&id=2
@ -41,7 +41,7 @@ PRIVATE>
! -------------------
: fib-upto* ( n -- seq )
0 1 [ pick over >= ] [ tuck + dup ] [ ] produce 3nip
0 1 [ pick over >= ] [ tuck + dup ] [ ] produce [ 3drop ] dip
but-last-slice { 0 1 } prepend ;
: euler002a ( -- answer )

View File

@ -25,7 +25,6 @@ IN: reports.noise
{ 3drop 1 }
{ 3dup 2 }
{ 3keep 3 }
{ 3nip 4 }
{ 3slip 3 }
{ 4drop 2 }
{ 4dup 3 }
@ -50,7 +49,6 @@ IN: reports.noise
{ ndrop 2 }
{ ndup 3 }
{ nip 2 }
{ nipd 3 }
{ nkeep 5 }
{ npick 6 }
{ nrot 5 }
@ -66,7 +64,6 @@ IN: reports.noise
{ swap 1 }
{ swapd 3 }
{ tuck 2 }
{ tuckd 4 }
{ with 1/2 }
{ bi 1/2 }