project-euler.064: adding description and SOLUTION:.
parent
fae208f67f
commit
10d4a41819
|
@ -1,7 +1,59 @@
|
||||||
USING: accessors arrays classes.tuple io kernel locals math math.functions
|
USING: accessors arrays classes.tuple io kernel locals math
|
||||||
math.ranges prettyprint project-euler.common sequences ;
|
math.functions math.ranges prettyprint project-euler.common
|
||||||
|
sequences ;
|
||||||
IN: project-euler.064
|
IN: project-euler.064
|
||||||
|
|
||||||
|
! http://projecteuler.net/index.php?section=problems&id=64
|
||||||
|
|
||||||
|
! DESCRIPTION
|
||||||
|
! -----------
|
||||||
|
|
||||||
|
! All square roots are periodic when written as continued
|
||||||
|
! fractions and can be written in the form:
|
||||||
|
|
||||||
|
! √N=a0+1/(a1+1/(a2+1/a3+...))
|
||||||
|
|
||||||
|
! For example, let us consider √23:
|
||||||
|
|
||||||
|
! √23=4+√(23)−4=4+1/(1/(√23−4)=4+1/(1+((√23−3)/7)
|
||||||
|
|
||||||
|
! If we continue we would get the following expansion:
|
||||||
|
|
||||||
|
! √23=4+1/(1+1/(3+1/(1+1/(8+...))))
|
||||||
|
|
||||||
|
! The process can be summarised as follows:
|
||||||
|
|
||||||
|
! a0=4, 1/(√23−4) = (√23+4)/7 = 1+(√23−3)/7
|
||||||
|
! a1=1, 7/(√23−3) = 7*(√23+3)/14 = 3+(√23−3)/2
|
||||||
|
! a2=3, 2/(√23−3) = 2*(√23+3)/14 = 1+(√23−4)/7
|
||||||
|
! a3=1, 7/(√23−4) = 7*(√23+4)/7 = 8+√23−4
|
||||||
|
! a4=8, 1/(√23−4) = (√23+4)/7 = 1+(√23−3)/7
|
||||||
|
! a5=1, 7/(√23−3) = 7*(√23+3)/14 = 3+(√23−3)/2
|
||||||
|
! a6=3, 2/(√23−3) = 2*(√23+3)/14 = 1+(√23−4)/7
|
||||||
|
! a7=1, 7/(√23−4) = 7*(√23+4)/7 = 8+√23−4
|
||||||
|
|
||||||
|
! It can be seen that the sequence is repeating. For
|
||||||
|
! conciseness, we use the notation √23=[4;(1,3,1,8)], to
|
||||||
|
! indicate that the block (1,3,1,8) repeats indefinitely.
|
||||||
|
|
||||||
|
! The first ten continued fraction representations of
|
||||||
|
! (irrational) square roots are:
|
||||||
|
|
||||||
|
! √2=[1;(2)] , period=1
|
||||||
|
! √3=[1;(1,2)], period=2
|
||||||
|
! √5=[2;(4)], period=1
|
||||||
|
! √6=[2;(2,4)], period=2
|
||||||
|
! √7=[2;(1,1,1,4)], period=4
|
||||||
|
! √8=[2;(1,4)], period=2
|
||||||
|
! √10=[3;(6)], period=1
|
||||||
|
! √11=[3;(3,6)], period=2
|
||||||
|
! √12=[3;(2,6)], period=2
|
||||||
|
! √13=[3;(1,1,1,1,6)], period=5
|
||||||
|
|
||||||
|
! Exactly four continued fractions, for N <= 13, have an odd period.
|
||||||
|
|
||||||
|
! How many continued fractions for N <= 10000 have an odd period?
|
||||||
|
|
||||||
<PRIVATE
|
<PRIVATE
|
||||||
|
|
||||||
TUPLE: cont-frac
|
TUPLE: cont-frac
|
||||||
|
@ -15,12 +67,7 @@ C: <cont-frac> cont-frac
|
||||||
dup tuple>array rest cont-frac slots>tuple ;
|
dup tuple>array rest cont-frac slots>tuple ;
|
||||||
|
|
||||||
: create-cont-frac ( n -- n cont-frac )
|
: create-cont-frac ( n -- n cont-frac )
|
||||||
dup sqrt >fixnum
|
dup sqrt >fixnum dup 1 <cont-frac> ;
|
||||||
[let :> root
|
|
||||||
root
|
|
||||||
root
|
|
||||||
1
|
|
||||||
] <cont-frac> ;
|
|
||||||
|
|
||||||
: step ( n cont-frac -- n cont-frac )
|
: step ( n cont-frac -- n cont-frac )
|
||||||
swap dup
|
swap dup
|
||||||
|
@ -54,13 +101,10 @@ C: <cont-frac> cont-frac
|
||||||
drop new-whole new-num-const new-denom <cont-frac>
|
drop new-whole new-num-const new-denom <cont-frac>
|
||||||
] ;
|
] ;
|
||||||
|
|
||||||
: loop ( c l n cont-frac -- c l n cont-frac )
|
:: loop ( c l n cf -- c l n cf )
|
||||||
[let :> cf :> n :> l :> c
|
n cf step :> new-cf drop
|
||||||
n cf step
|
|
||||||
:> new-cf drop
|
|
||||||
c 1 + l n new-cf
|
c 1 + l n new-cf
|
||||||
l new-cf = [ ] [ loop ] if
|
l new-cf = [ loop ] unless ;
|
||||||
] ;
|
|
||||||
|
|
||||||
: find-period ( n -- period )
|
: find-period ( n -- period )
|
||||||
0 swap
|
0 swap
|
||||||
|
@ -70,7 +114,8 @@ C: <cont-frac> cont-frac
|
||||||
loop
|
loop
|
||||||
drop drop drop ;
|
drop drop drop ;
|
||||||
|
|
||||||
: try-all ( -- n ) 2 10000 [a,b]
|
: try-all ( -- n )
|
||||||
|
2 10000 [a,b]
|
||||||
[ perfect-square? not ] filter
|
[ perfect-square? not ] filter
|
||||||
[ find-period ] map
|
[ find-period ] map
|
||||||
[ odd? ] filter
|
[ odd? ] filter
|
||||||
|
@ -81,52 +126,51 @@ PRIVATE>
|
||||||
: euler064a ( -- n ) try-all ;
|
: euler064a ( -- n ) try-all ;
|
||||||
|
|
||||||
<PRIVATE
|
<PRIVATE
|
||||||
|
|
||||||
! (√n + a)/b
|
! (√n + a)/b
|
||||||
TUPLE: cfrac n a b ;
|
TUPLE: cfrac n a b ;
|
||||||
|
|
||||||
C: <cfrac> cfrac
|
C: <cfrac> cfrac
|
||||||
|
|
||||||
|
: >cfrac< ( fr -- n a b )
|
||||||
|
[ n>> ] [ a>> ] [ b>> ] tri ;
|
||||||
|
|
||||||
! (√n + a) / b = 1 / (k + (√n + a') / b')
|
! (√n + a) / b = 1 / (k + (√n + a') / b')
|
||||||
!
|
!
|
||||||
! b / (√n + a) = b (√n - a) / (n - a^2) = (√n - a) / ((n - a^2) / b)
|
! b / (√n + a) = b (√n - a) / (n - a^2) = (√n - a) / ((n - a^2) / b)
|
||||||
:: reciprocal ( fr -- fr' )
|
:: reciprocal ( fr -- fr' )
|
||||||
fr n>>
|
fr >cfrac< :> ( n a b )
|
||||||
fr a>> neg
|
n
|
||||||
fr n>> fr a>> sq - fr b>> /
|
a neg
|
||||||
<cfrac>
|
n a sq - b /
|
||||||
;
|
<cfrac> ;
|
||||||
|
|
||||||
:: split ( fr -- k fr' )
|
:: split ( fr -- k fr' )
|
||||||
fr n>> sqrt fr a>> + fr b>> / >integer
|
fr >cfrac< :> ( n a b )
|
||||||
dup fr n>> swap
|
n sqrt a + b / >integer
|
||||||
fr b>> * fr a>> swap -
|
dup n swap
|
||||||
fr b>>
|
b * a swap -
|
||||||
<cfrac>
|
b
|
||||||
;
|
<cfrac> ;
|
||||||
|
|
||||||
: pure ( n -- fr )
|
: pure ( n -- fr )
|
||||||
0 1 <cfrac>
|
0 1 <cfrac> ;
|
||||||
;
|
|
||||||
|
|
||||||
: next ( fr -- fr' )
|
: next ( fr -- fr' )
|
||||||
reciprocal split nip
|
reciprocal split nip ;
|
||||||
;
|
|
||||||
|
|
||||||
:: period ( n -- per )
|
:: period ( n -- period )
|
||||||
|
n sqrt >integer sq n = [ 0 ] [
|
||||||
n pure split nip :> start
|
n pure split nip :> start
|
||||||
n sqrt >integer sq n =
|
1 start next
|
||||||
[ 0 ]
|
|
||||||
[ 1 start next
|
|
||||||
[ dup start = not ]
|
[ dup start = not ]
|
||||||
[ next [ 1 + ] dip ]
|
[ next [ 1 + ] dip ]
|
||||||
while
|
while drop
|
||||||
drop
|
] if ;
|
||||||
] if
|
|
||||||
;
|
|
||||||
|
|
||||||
PRIVATE>
|
PRIVATE>
|
||||||
|
|
||||||
: euler064b ( -- ct )
|
: euler064b ( -- ct )
|
||||||
1 10000 [a,b]
|
10000 [1,b] [ period odd? ] count ;
|
||||||
[ period odd? ] count
|
|
||||||
;
|
SOLUTION: euler064b
|
||||||
|
|
Loading…
Reference in New Issue