It cause the code heap to run out of memory to soon and without growth,
it crashed windows.
char-rename
Björn Lindqvist 2016-12-15 00:49:38 +01:00
parent 4737645857
commit 20a98a38fb
1 changed files with 4 additions and 5 deletions

View File

@ -6,20 +6,20 @@ namespace factor {
// Allocates memory
inline code_block* factor_vm::allot_code_block(cell size,
code_block_type type) {
cell block_size = size + sizeof(code_block);
cell required_free = block_size + code->high_water_mark();
if (!code->allocator->can_allot_p(required_free)) {
code_block* block = code->allocator->allot(block_size);
if (block == NULL) {
// If allocation failed, do a full GC and compact the code heap.
// A full GC that occurs as a result of the data heap filling up does not
// trigger a compaction. This setup ensures that most GCs do not compact
// the code heap, but if the code fills up, it probably means it will be
// fragmented after GC anyway, so its best to compact.
primitive_compact_gc();
block = code->allocator->allot(block_size);
// Insufficient room even after code GC, give up
if (!code->allocator->can_allot_p(required_free)) {
if (block == NULL) {
std::cout << "Code heap used: " << code->allocator->occupied_space()
<< "\n";
std::cout << "Code heap free: " << code->allocator->free_space << "\n";
@ -27,7 +27,6 @@ inline code_block* factor_vm::allot_code_block(cell size,
fatal_error("Out of memory in allot_code_block", 0);
}
}
code_block* block = code->allocator->allot(block_size);
// next time we do a minor GC, we have to trace this code block, since
// the fields of the code_block struct might point into nursery or aging