core.math, bignum/f, shift subnormals before rounding. Fixes #1782
parent
81da68c906
commit
3760c965af
|
@ -280,5 +280,13 @@ IN: math.integers.tests
|
|||
{ 0x0.6p-1022 } [ 6 1026 2^ /f ] unit-test
|
||||
{ 0x0.4p-1022 } [ 4 1026 2^ /f ] unit-test
|
||||
|
||||
! bignum/f didn't round subnormals
|
||||
! biggest subnormal to smallest normal rounding
|
||||
{ 0x1.0p-1022 } [ 0xfffffffffffffffffffffffff 1122 2^ /f ] unit-test
|
||||
! almost half less than smallest subnormal to smallest subnormal rounding
|
||||
{ 0x1.0p-1074 } [ 0x8000000000000000000000001 1122 52 + 2^ /f ] unit-test
|
||||
! half less than smallest subnormal to 0
|
||||
{ 0.0 } [ 0x8000000000000000000000000 1122 52 + 2^ /f ] unit-test
|
||||
|
||||
! rounding triggering special case in post-scale
|
||||
{ 1.0 } [ 300 2^ 1 - 300 2^ /f ] unit-test
|
||||
|
|
|
@ -119,8 +119,8 @@ M: bignum (log2) bignum-log2 ; inline
|
|||
! As an optimization to minimize the size of the operands of the bignum
|
||||
! divisions we will do, we start by stripping any trailing zeros from
|
||||
! the denominator and move it into the scale factor.
|
||||
! We want a result in ]2^54;2^53] to find the mantissa
|
||||
! in ]2^53,2^52] with 1 extra "guard" bit for rounding.
|
||||
! We want a 54 bit result, starting with leading 1, followed by
|
||||
! the 52 bit mantissa and then a guard bit: 1mmmmmmmmmm...mmmmmmmmmmmg
|
||||
! So we shift the numerator to get the result of the integer division
|
||||
! "num/den" in the range ]2^54; 2^53]; Our shift is only a guess
|
||||
! based on the magnitude of the inputs, so it
|
||||
|
@ -148,12 +148,23 @@ M: bignum (log2) bignum-log2 ; inline
|
|||
! "num/den" would be in the range ]2^55; 2^53]. After this step
|
||||
! it will be in the range ]2^54; 2^53]. Compute "num/den" and the
|
||||
! reminder used for rounding
|
||||
! For subnormals, after we know the final value of the exponent,
|
||||
! we shift the numerator again to get the correct precision.
|
||||
! We do it before rounding so that subnormals are correctly rounded.
|
||||
: (2/-with-epsilon) ( epsilon? num -- epsilon?' num' )
|
||||
[ 1 bitand zero? not or ] [ 2/ ] bi ; inline
|
||||
|
||||
: (shift-with-epsilon) ( epsilon? num den scale -- epsilon?' num' den scale )
|
||||
[
|
||||
nip 1021 +
|
||||
[ neg 2^ 1 - bitand zero? not or ] [ shift ] 2bi
|
||||
] 2keep ; inline
|
||||
|
||||
: mantissa-and-guard ( epsilon? num den scale -- epsilon?' mantissa-and-guard rem scale' )
|
||||
2over /i log2 53 >
|
||||
[ [ (2/-with-epsilon) ] [ ] [ 1 + ] tri* ] when
|
||||
! At this point, the scale value is the exponent minus 1.
|
||||
dup -1021 < [ (shift-with-epsilon) ] when
|
||||
[ /mod ] dip ; inline
|
||||
|
||||
! Third step: rounding
|
||||
|
@ -178,13 +189,18 @@ M: bignum (log2) bignum-log2 ; inline
|
|||
] [ drop nip ] if ; inline
|
||||
|
||||
! Fourth step: post-scaling
|
||||
! Because of rounding, our mantissa with guard bit is now in the
|
||||
! range [2^54;2^53], so we have to handle 2^54 specially.
|
||||
! Because of rounding, our mantissa with guard bit may have overflowed
|
||||
! the 54 bit precision to 2^54 so we have to handle it specially.
|
||||
! For subnormals, the rounding may also have overflowed the precision,
|
||||
! but the overflowed value is actually the correct value by chance
|
||||
! (even in the case when the biggest subnormal is rounded up to
|
||||
! the smallest normal float) because we interpret it directly
|
||||
! as the bits of the resulting double.
|
||||
: scale-float ( mantissa scale -- float' )
|
||||
! At this point, the scale value is the exponent minus 1.
|
||||
! the scale value is the exponent minus 1.
|
||||
{
|
||||
{ [ dup 1024 > ] [ 2drop 1/0. ] }
|
||||
{ [ dup -1021 < ] [ 1021 + shift bits>double ] } ! subnormals and underflow
|
||||
{ [ dup -1021 < ] [ drop bits>double ] } ! subnormals and underflow
|
||||
[ [ 52 2^ 1 - bitand ] dip 1022 + 52 shift bitor bits>double ]
|
||||
} cond ; inline
|
||||
|
||||
|
|
|
@ -114,7 +114,7 @@ TUPLE: float-parse
|
|||
! Also, take some margin as the current float parsing algorithm
|
||||
! does some rounding; For example,
|
||||
! 0x1.0p-1074 is the smallest IE754 double, but floats down to
|
||||
! 0x0.fffffffffffffcp-1074 are parsed as 0x1.0p-1074
|
||||
! 0x0.8p-1074 (excluded) are parsed as 0x1.0p-1074
|
||||
CONSTANT: max-magnitude-10 309
|
||||
CONSTANT: min-magnitude-10 -323
|
||||
CONSTANT: max-magnitude-2 1027
|
||||
|
|
Loading…
Reference in New Issue