inlineimpl.hpp is toast
parent
b6718641dc
commit
3a88d8c49e
|
@ -10,4 +10,25 @@ inline cell array_nth(array *array, cell slot)
|
|||
return array->data()[slot];
|
||||
}
|
||||
|
||||
inline void factor_vm::set_array_nth(array *array, cell slot, cell value)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
assert(slot < array_capacity(array));
|
||||
assert(array->h.hi_tag() == ARRAY_TYPE);
|
||||
check_tagged_pointer(value);
|
||||
#endif
|
||||
array->data()[slot] = value;
|
||||
write_barrier(array);
|
||||
}
|
||||
|
||||
struct growable_array {
|
||||
cell count;
|
||||
gc_root<array> elements;
|
||||
|
||||
growable_array(factor_vm *myvm, cell capacity = 10) : count(0), elements(myvm->allot_array(capacity,F),myvm) {}
|
||||
|
||||
void add(cell elt);
|
||||
void trim();
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -4,4 +4,9 @@ namespace factor
|
|||
VM_C_API void box_boolean(bool value, factor_vm *vm);
|
||||
VM_C_API bool to_boolean(cell value, factor_vm *vm);
|
||||
|
||||
inline cell factor_vm::tag_boolean(cell untagged)
|
||||
{
|
||||
return (untagged ? T : F);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,4 +1,16 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
struct growable_byte_array {
|
||||
cell count;
|
||||
gc_root<byte_array> elements;
|
||||
|
||||
growable_byte_array(factor_vm *myvm,cell capacity = 40) : count(0), elements(myvm->allot_byte_array(capacity),myvm) { }
|
||||
|
||||
void append_bytes(void *elts, cell len);
|
||||
void append_byte_array(cell elts);
|
||||
|
||||
void trim();
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -8,4 +8,49 @@ inline static cell callstack_size(cell size)
|
|||
|
||||
VM_ASM_API void save_callstack_bottom(stack_frame *callstack_bottom, factor_vm *vm);
|
||||
|
||||
/* This is a little tricky. The iterator may allocate memory, so we
|
||||
keep the callstack in a GC root and use relative offsets */
|
||||
template<typename TYPE> void factor_vm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
|
||||
{
|
||||
gc_root<callstack> stack(stack_,this);
|
||||
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
|
||||
|
||||
while(frame_offset >= 0)
|
||||
{
|
||||
stack_frame *frame = stack->frame_at(frame_offset);
|
||||
frame_offset -= frame->size;
|
||||
iterator(frame,this);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TYPE> void factor_vm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
|
||||
{
|
||||
stack_frame *frame = (stack_frame *)bottom - 1;
|
||||
|
||||
while((cell)frame >= top)
|
||||
{
|
||||
iterator(frame,this);
|
||||
frame = frame_successor(frame);
|
||||
}
|
||||
}
|
||||
|
||||
/* Every object has a regular representation in the runtime, which makes GC
|
||||
much simpler. Every slot of the object until binary_payload_start is a pointer
|
||||
to some other object. */
|
||||
struct factor_vm;
|
||||
inline void factor_vm::do_slots(cell obj, void (* iter)(cell *,factor_vm*))
|
||||
{
|
||||
cell scan = obj;
|
||||
cell payload_start = binary_payload_start((object *)obj);
|
||||
cell end = obj + payload_start;
|
||||
|
||||
scan += sizeof(cell);
|
||||
|
||||
while(scan < end)
|
||||
{
|
||||
iter((cell *)scan,this);
|
||||
scan += sizeof(cell);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,4 +1,11 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
inline void factor_vm::check_code_pointer(cell ptr)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
assert(in_code_heap_p(ptr));
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -667,4 +667,68 @@ VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *myvm
|
|||
VM_PTR->inline_gc(gc_roots_base,gc_roots_size);
|
||||
}
|
||||
|
||||
inline object *factor_vm::allot_zone(zone *z, cell a)
|
||||
{
|
||||
cell h = z->here;
|
||||
z->here = h + align8(a);
|
||||
object *obj = (object *)h;
|
||||
allot_barrier(obj);
|
||||
return obj;
|
||||
}
|
||||
|
||||
/*
|
||||
* It is up to the caller to fill in the object's fields in a meaningful
|
||||
* fashion!
|
||||
*/
|
||||
object *factor_vm::allot_object(header header, cell size)
|
||||
{
|
||||
#ifdef GC_DEBUG
|
||||
if(!gc_off)
|
||||
gc();
|
||||
#endif
|
||||
|
||||
object *obj;
|
||||
|
||||
if(nursery.size - allot_buffer_zone > size)
|
||||
{
|
||||
/* If there is insufficient room, collect the nursery */
|
||||
if(nursery.here + allot_buffer_zone + size > nursery.end)
|
||||
garbage_collection(data->nursery(),false,0);
|
||||
|
||||
cell h = nursery.here;
|
||||
nursery.here = h + align8(size);
|
||||
obj = (object *)h;
|
||||
}
|
||||
/* If the object is bigger than the nursery, allocate it in
|
||||
tenured space */
|
||||
else
|
||||
{
|
||||
zone *tenured = &data->generations[data->tenured()];
|
||||
|
||||
/* If tenured space does not have enough room, collect */
|
||||
if(tenured->here + size > tenured->end)
|
||||
{
|
||||
gc();
|
||||
tenured = &data->generations[data->tenured()];
|
||||
}
|
||||
|
||||
/* If it still won't fit, grow the heap */
|
||||
if(tenured->here + size > tenured->end)
|
||||
{
|
||||
garbage_collection(data->tenured(),true,size);
|
||||
tenured = &data->generations[data->tenured()];
|
||||
}
|
||||
|
||||
obj = allot_zone(tenured,size);
|
||||
|
||||
/* Allows initialization code to store old->new pointers
|
||||
without hitting the write barrier in the common case of
|
||||
a nursery allocation */
|
||||
write_barrier(obj);
|
||||
}
|
||||
|
||||
obj->h = header;
|
||||
return obj;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -19,4 +19,41 @@ template <typename T> cell array_size(T *array)
|
|||
return array_size<T>(array_capacity(array));
|
||||
}
|
||||
|
||||
template <typename TYPE> TYPE *factor_vm::allot_array_internal(cell capacity)
|
||||
{
|
||||
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
|
||||
array->capacity = tag_fixnum(capacity);
|
||||
return array;
|
||||
}
|
||||
|
||||
template <typename TYPE> bool factor_vm::reallot_array_in_place_p(TYPE *array, cell capacity)
|
||||
{
|
||||
return in_zone(&nursery,array) && capacity <= array_capacity(array);
|
||||
}
|
||||
|
||||
template <typename TYPE> TYPE *factor_vm::reallot_array(TYPE *array_, cell capacity)
|
||||
{
|
||||
gc_root<TYPE> array(array_,this);
|
||||
|
||||
if(reallot_array_in_place_p(array.untagged(),capacity))
|
||||
{
|
||||
array->capacity = tag_fixnum(capacity);
|
||||
return array.untagged();
|
||||
}
|
||||
else
|
||||
{
|
||||
cell to_copy = array_capacity(array.untagged());
|
||||
if(capacity < to_copy)
|
||||
to_copy = capacity;
|
||||
|
||||
TYPE *new_array = allot_array_internal<TYPE>(capacity);
|
||||
|
||||
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
|
||||
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
|
||||
0,(capacity - to_copy) * TYPE::element_size);
|
||||
|
||||
return new_array;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,298 +0,0 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
// I've had to copy inline implementations here to make dependencies work. Am hoping to move this code back into include files
|
||||
// once the rest of the reentrant changes are done. -PD
|
||||
|
||||
//data_gc.hpp
|
||||
inline bool factor_vm::collecting_accumulation_gen_p()
|
||||
{
|
||||
return ((data->have_aging_p()
|
||||
&& collecting_gen == data->aging()
|
||||
&& !collecting_aging_again)
|
||||
|| collecting_gen == data->tenured());
|
||||
}
|
||||
|
||||
inline object *factor_vm::allot_zone(zone *z, cell a)
|
||||
{
|
||||
cell h = z->here;
|
||||
z->here = h + align8(a);
|
||||
object *obj = (object *)h;
|
||||
allot_barrier(obj);
|
||||
return obj;
|
||||
}
|
||||
|
||||
/*
|
||||
* It is up to the caller to fill in the object's fields in a meaningful
|
||||
* fashion!
|
||||
*/
|
||||
inline object *factor_vm::allot_object(header header, cell size)
|
||||
{
|
||||
#ifdef GC_DEBUG
|
||||
if(!gc_off)
|
||||
gc();
|
||||
#endif
|
||||
|
||||
object *obj;
|
||||
|
||||
if(nursery.size - allot_buffer_zone > size)
|
||||
{
|
||||
/* If there is insufficient room, collect the nursery */
|
||||
if(nursery.here + allot_buffer_zone + size > nursery.end)
|
||||
garbage_collection(data->nursery(),false,0);
|
||||
|
||||
cell h = nursery.here;
|
||||
nursery.here = h + align8(size);
|
||||
obj = (object *)h;
|
||||
}
|
||||
/* If the object is bigger than the nursery, allocate it in
|
||||
tenured space */
|
||||
else
|
||||
{
|
||||
zone *tenured = &data->generations[data->tenured()];
|
||||
|
||||
/* If tenured space does not have enough room, collect */
|
||||
if(tenured->here + size > tenured->end)
|
||||
{
|
||||
gc();
|
||||
tenured = &data->generations[data->tenured()];
|
||||
}
|
||||
|
||||
/* If it still won't fit, grow the heap */
|
||||
if(tenured->here + size > tenured->end)
|
||||
{
|
||||
garbage_collection(data->tenured(),true,size);
|
||||
tenured = &data->generations[data->tenured()];
|
||||
}
|
||||
|
||||
obj = allot_zone(tenured,size);
|
||||
|
||||
/* Allows initialization code to store old->new pointers
|
||||
without hitting the write barrier in the common case of
|
||||
a nursery allocation */
|
||||
write_barrier(obj);
|
||||
}
|
||||
|
||||
obj->h = header;
|
||||
return obj;
|
||||
}
|
||||
|
||||
template<typename TYPE> TYPE *factor_vm::allot(cell size)
|
||||
{
|
||||
return (TYPE *)allot_object(header(TYPE::type_number),size);
|
||||
}
|
||||
|
||||
inline void factor_vm::check_data_pointer(object *pointer)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
if(!growing_data_heap)
|
||||
{
|
||||
assert((cell)pointer >= data->seg->start
|
||||
&& (cell)pointer < data->seg->end);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void factor_vm::check_tagged_pointer(cell tagged)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
if(!immediate_p(tagged))
|
||||
{
|
||||
object *obj = untag<object>(tagged);
|
||||
check_data_pointer(obj);
|
||||
obj->h.hi_tag();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//generic_arrays.hpp
|
||||
template <typename TYPE> TYPE *factor_vm::allot_array_internal(cell capacity)
|
||||
{
|
||||
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
|
||||
array->capacity = tag_fixnum(capacity);
|
||||
return array;
|
||||
}
|
||||
|
||||
template <typename TYPE> bool factor_vm::reallot_array_in_place_p(TYPE *array, cell capacity)
|
||||
{
|
||||
return in_zone(&nursery,array) && capacity <= array_capacity(array);
|
||||
}
|
||||
|
||||
template <typename TYPE> TYPE *factor_vm::reallot_array(TYPE *array_, cell capacity)
|
||||
{
|
||||
gc_root<TYPE> array(array_,this);
|
||||
|
||||
if(reallot_array_in_place_p(array.untagged(),capacity))
|
||||
{
|
||||
array->capacity = tag_fixnum(capacity);
|
||||
return array.untagged();
|
||||
}
|
||||
else
|
||||
{
|
||||
cell to_copy = array_capacity(array.untagged());
|
||||
if(capacity < to_copy)
|
||||
to_copy = capacity;
|
||||
|
||||
TYPE *new_array = allot_array_internal<TYPE>(capacity);
|
||||
|
||||
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
|
||||
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
|
||||
0,(capacity - to_copy) * TYPE::element_size);
|
||||
|
||||
return new_array;
|
||||
}
|
||||
}
|
||||
|
||||
//arrays.hpp
|
||||
inline void factor_vm::set_array_nth(array *array, cell slot, cell value)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
assert(slot < array_capacity(array));
|
||||
assert(array->h.hi_tag() == ARRAY_TYPE);
|
||||
check_tagged_pointer(value);
|
||||
#endif
|
||||
array->data()[slot] = value;
|
||||
write_barrier(array);
|
||||
}
|
||||
|
||||
struct growable_array {
|
||||
cell count;
|
||||
gc_root<array> elements;
|
||||
|
||||
growable_array(factor_vm *myvm, cell capacity = 10) : count(0), elements(myvm->allot_array(capacity,F),myvm) {}
|
||||
|
||||
void add(cell elt);
|
||||
void trim();
|
||||
};
|
||||
|
||||
//byte_arrays.hpp
|
||||
struct growable_byte_array {
|
||||
cell count;
|
||||
gc_root<byte_array> elements;
|
||||
|
||||
growable_byte_array(factor_vm *myvm,cell capacity = 40) : count(0), elements(myvm->allot_byte_array(capacity),myvm) { }
|
||||
|
||||
void append_bytes(void *elts, cell len);
|
||||
void append_byte_array(cell elts);
|
||||
|
||||
void trim();
|
||||
};
|
||||
|
||||
//math.hpp
|
||||
inline cell factor_vm::allot_integer(fixnum x)
|
||||
{
|
||||
if(x < fixnum_min || x > fixnum_max)
|
||||
return tag<bignum>(fixnum_to_bignum(x));
|
||||
else
|
||||
return tag_fixnum(x);
|
||||
}
|
||||
|
||||
inline cell factor_vm::allot_cell(cell x)
|
||||
{
|
||||
if(x > (cell)fixnum_max)
|
||||
return tag<bignum>(cell_to_bignum(x));
|
||||
else
|
||||
return tag_fixnum(x);
|
||||
}
|
||||
|
||||
inline cell factor_vm::allot_float(double n)
|
||||
{
|
||||
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
|
||||
flo->n = n;
|
||||
return tag(flo);
|
||||
}
|
||||
|
||||
inline bignum *factor_vm::float_to_bignum(cell tagged)
|
||||
{
|
||||
return double_to_bignum(untag_float(tagged));
|
||||
}
|
||||
|
||||
inline double factor_vm::bignum_to_float(cell tagged)
|
||||
{
|
||||
return bignum_to_double(untag<bignum>(tagged));
|
||||
}
|
||||
|
||||
inline double factor_vm::untag_float(cell tagged)
|
||||
{
|
||||
return untag<boxed_float>(tagged)->n;
|
||||
}
|
||||
|
||||
inline double factor_vm::untag_float_check(cell tagged)
|
||||
{
|
||||
return untag_check<boxed_float>(tagged)->n;
|
||||
}
|
||||
|
||||
inline fixnum factor_vm::float_to_fixnum(cell tagged)
|
||||
{
|
||||
return (fixnum)untag_float(tagged);
|
||||
}
|
||||
|
||||
inline double factor_vm::fixnum_to_float(cell tagged)
|
||||
{
|
||||
return (double)untag_fixnum(tagged);
|
||||
}
|
||||
|
||||
//callstack.hpp
|
||||
/* This is a little tricky. The iterator may allocate memory, so we
|
||||
keep the callstack in a GC root and use relative offsets */
|
||||
template<typename TYPE> void factor_vm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
|
||||
{
|
||||
gc_root<callstack> stack(stack_,this);
|
||||
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
|
||||
|
||||
while(frame_offset >= 0)
|
||||
{
|
||||
stack_frame *frame = stack->frame_at(frame_offset);
|
||||
frame_offset -= frame->size;
|
||||
iterator(frame,this);
|
||||
}
|
||||
}
|
||||
|
||||
//booleans.hpp
|
||||
inline cell factor_vm::tag_boolean(cell untagged)
|
||||
{
|
||||
return (untagged ? T : F);
|
||||
}
|
||||
|
||||
// callstack.hpp
|
||||
template<typename TYPE> void factor_vm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
|
||||
{
|
||||
stack_frame *frame = (stack_frame *)bottom - 1;
|
||||
|
||||
while((cell)frame >= top)
|
||||
{
|
||||
iterator(frame,this);
|
||||
frame = frame_successor(frame);
|
||||
}
|
||||
}
|
||||
|
||||
// data_heap.hpp
|
||||
/* Every object has a regular representation in the runtime, which makes GC
|
||||
much simpler. Every slot of the object until binary_payload_start is a pointer
|
||||
to some other object. */
|
||||
struct factor_vm;
|
||||
inline void factor_vm::do_slots(cell obj, void (* iter)(cell *,factor_vm*))
|
||||
{
|
||||
cell scan = obj;
|
||||
cell payload_start = binary_payload_start((object *)obj);
|
||||
cell end = obj + payload_start;
|
||||
|
||||
scan += sizeof(cell);
|
||||
|
||||
while(scan < end)
|
||||
{
|
||||
iter((cell *)scan,this);
|
||||
scan += sizeof(cell);
|
||||
}
|
||||
}
|
||||
|
||||
// code_heap.hpp
|
||||
|
||||
inline void factor_vm::check_code_pointer(cell ptr)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
assert(in_code_heap_p(ptr));
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
|
@ -1,7 +1,6 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
//local_roots.hpp
|
||||
template <typename TYPE>
|
||||
struct gc_root : public tagged<TYPE>
|
||||
{
|
||||
|
|
|
@ -52,26 +52,25 @@
|
|||
#include "data_heap.hpp"
|
||||
#include "write_barrier.hpp"
|
||||
#include "data_gc.hpp"
|
||||
#include "generic_arrays.hpp"
|
||||
#include "debug.hpp"
|
||||
#include "arrays.hpp"
|
||||
#include "strings.hpp"
|
||||
#include "booleans.hpp"
|
||||
#include "byte_arrays.hpp"
|
||||
#include "tuples.hpp"
|
||||
#include "words.hpp"
|
||||
#include "math.hpp"
|
||||
#include "float_bits.hpp"
|
||||
#include "io.hpp"
|
||||
#include "heap.hpp"
|
||||
#include "code_heap.hpp"
|
||||
#include "image.hpp"
|
||||
#include "callstack.hpp"
|
||||
#include "alien.hpp"
|
||||
#include "vm.hpp"
|
||||
#include "tagged.hpp"
|
||||
#include "local_roots.hpp"
|
||||
#include "inlineimpls.hpp"
|
||||
#include "callstack.hpp"
|
||||
#include "generic_arrays.hpp"
|
||||
#include "arrays.hpp"
|
||||
#include "math.hpp"
|
||||
#include "booleans.hpp"
|
||||
#include "code_heap.hpp"
|
||||
#include "byte_arrays.hpp"
|
||||
#include "jit.hpp"
|
||||
#include "quotations.hpp"
|
||||
#include "dispatch.hpp"
|
||||
|
|
57
vm/math.hpp
57
vm/math.hpp
|
@ -5,12 +5,61 @@ static const fixnum fixnum_max = (((fixnum)1 << (WORD_SIZE - TAG_BITS - 1)) - 1)
|
|||
static const fixnum fixnum_min = (-((fixnum)1 << (WORD_SIZE - TAG_BITS - 1)));
|
||||
static const fixnum array_size_max = ((cell)1 << (WORD_SIZE - TAG_BITS - 2));
|
||||
|
||||
inline cell factor_vm::allot_integer(fixnum x)
|
||||
{
|
||||
if(x < fixnum_min || x > fixnum_max)
|
||||
return tag<bignum>(fixnum_to_bignum(x));
|
||||
else
|
||||
return tag_fixnum(x);
|
||||
}
|
||||
|
||||
inline cell factor_vm::allot_cell(cell x)
|
||||
{
|
||||
if(x > (cell)fixnum_max)
|
||||
return tag<bignum>(cell_to_bignum(x));
|
||||
else
|
||||
return tag_fixnum(x);
|
||||
}
|
||||
|
||||
inline cell factor_vm::allot_float(double n)
|
||||
{
|
||||
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
|
||||
flo->n = n;
|
||||
return tag(flo);
|
||||
}
|
||||
|
||||
inline bignum *factor_vm::float_to_bignum(cell tagged)
|
||||
{
|
||||
return double_to_bignum(untag_float(tagged));
|
||||
}
|
||||
|
||||
inline double factor_vm::bignum_to_float(cell tagged)
|
||||
{
|
||||
return bignum_to_double(untag<bignum>(tagged));
|
||||
}
|
||||
|
||||
inline double factor_vm::untag_float(cell tagged)
|
||||
{
|
||||
return untag<boxed_float>(tagged)->n;
|
||||
}
|
||||
|
||||
inline double factor_vm::untag_float_check(cell tagged)
|
||||
{
|
||||
return untag_check<boxed_float>(tagged)->n;
|
||||
}
|
||||
|
||||
inline fixnum factor_vm::float_to_fixnum(cell tagged)
|
||||
{
|
||||
return (fixnum)untag_float(tagged);
|
||||
}
|
||||
|
||||
inline double factor_vm::fixnum_to_float(cell tagged)
|
||||
{
|
||||
return (double)untag_fixnum(tagged);
|
||||
}
|
||||
|
||||
// defined in assembler
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
VM_C_API void box_float(float flo, factor_vm *vm);
|
||||
VM_C_API float to_float(cell value, factor_vm *vm);
|
||||
VM_C_API void box_double(double flo, factor_vm *vm);
|
||||
|
|
55
vm/vm.hpp
55
vm/vm.hpp
|
@ -101,20 +101,20 @@ struct factor_vm
|
|||
void bignum_destructive_add(bignum * bignum, bignum_digit_type n);
|
||||
void bignum_destructive_scale_up(bignum * bignum, bignum_digit_type factor);
|
||||
void bignum_divide_unsigned_large_denominator(bignum * numerator, bignum * denominator,
|
||||
bignum * * quotient, bignum * * remainder, int q_negative_p, int r_negative_p);
|
||||
bignum * * quotient, bignum * * remainder, int q_negative_p, int r_negative_p);
|
||||
void bignum_divide_unsigned_normalized(bignum * u, bignum * v, bignum * q);
|
||||
bignum_digit_type bignum_divide_subtract(bignum_digit_type * v_start, bignum_digit_type * v_end,
|
||||
bignum_digit_type guess, bignum_digit_type * u_start);
|
||||
bignum_digit_type guess, bignum_digit_type * u_start);
|
||||
void bignum_divide_unsigned_medium_denominator(bignum * numerator,bignum_digit_type denominator,
|
||||
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
|
||||
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
|
||||
void bignum_destructive_normalization(bignum * source, bignum * target, int shift_left);
|
||||
void bignum_destructive_unnormalization(bignum * bignum, int shift_right);
|
||||
bignum_digit_type bignum_digit_divide(bignum_digit_type uh, bignum_digit_type ul,
|
||||
bignum_digit_type v, bignum_digit_type * q) /* return value */;
|
||||
bignum_digit_type v, bignum_digit_type * q) /* return value */;
|
||||
bignum_digit_type bignum_digit_divide_subtract(bignum_digit_type v1, bignum_digit_type v2,
|
||||
bignum_digit_type guess, bignum_digit_type * u);
|
||||
bignum_digit_type guess, bignum_digit_type * u);
|
||||
void bignum_divide_unsigned_small_denominator(bignum * numerator, bignum_digit_type denominator,
|
||||
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
|
||||
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
|
||||
bignum_digit_type bignum_destructive_scale_down(bignum * bignum, bignum_digit_type denominator);
|
||||
bignum * bignum_remainder_unsigned_small_denominator(bignum * n, bignum_digit_type d, int negative_p);
|
||||
bignum *bignum_digit_to_bignum(bignum_digit_type digit, int negative_p);
|
||||
|
@ -171,7 +171,6 @@ struct factor_vm
|
|||
template<typename T> void each_object(T &functor);
|
||||
cell find_all_words();
|
||||
cell object_size(cell tagged);
|
||||
|
||||
|
||||
//write barrier
|
||||
cell allot_markers_offset;
|
||||
|
@ -282,14 +281,46 @@ struct factor_vm
|
|||
void clear_gc_stats();
|
||||
void primitive_become();
|
||||
void inline_gc(cell *gc_roots_base, cell gc_roots_size);
|
||||
inline bool collecting_accumulation_gen_p();
|
||||
inline object *allot_zone(zone *z, cell a);
|
||||
inline object *allot_object(header header, cell size);
|
||||
template <typename TYPE> TYPE *allot(cell size);
|
||||
inline void check_data_pointer(object *pointer);
|
||||
inline void check_tagged_pointer(cell tagged);
|
||||
object *allot_object(header header, cell size);
|
||||
void primitive_clear_gc_stats();
|
||||
|
||||
template<typename TYPE> TYPE *allot(cell size)
|
||||
{
|
||||
return (TYPE *)allot_object(header(TYPE::type_number),size);
|
||||
}
|
||||
|
||||
inline bool collecting_accumulation_gen_p()
|
||||
{
|
||||
return ((data->have_aging_p()
|
||||
&& collecting_gen == data->aging()
|
||||
&& !collecting_aging_again)
|
||||
|| collecting_gen == data->tenured());
|
||||
}
|
||||
|
||||
inline void check_data_pointer(object *pointer)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
if(!growing_data_heap)
|
||||
{
|
||||
assert((cell)pointer >= data->seg->start
|
||||
&& (cell)pointer < data->seg->end);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void check_tagged_pointer(cell tagged)
|
||||
{
|
||||
#ifdef FACTOR_DEBUG
|
||||
if(!immediate_p(tagged))
|
||||
{
|
||||
object *obj = untag<object>(tagged);
|
||||
check_data_pointer(obj);
|
||||
obj->h.hi_tag();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
|
|
Loading…
Reference in New Issue