inlineimpl.hpp is toast

Phil Dawes 2009-09-29 19:53:10 +01:00
parent b6718641dc
commit 3a88d8c49e
12 changed files with 294 additions and 323 deletions

View File

@ -10,4 +10,25 @@ inline cell array_nth(array *array, cell slot)
return array->data()[slot];
}
inline void factor_vm::set_array_nth(array *array, cell slot, cell value)
{
#ifdef FACTOR_DEBUG
assert(slot < array_capacity(array));
assert(array->h.hi_tag() == ARRAY_TYPE);
check_tagged_pointer(value);
#endif
array->data()[slot] = value;
write_barrier(array);
}
struct growable_array {
cell count;
gc_root<array> elements;
growable_array(factor_vm *myvm, cell capacity = 10) : count(0), elements(myvm->allot_array(capacity,F),myvm) {}
void add(cell elt);
void trim();
};
}

View File

@ -4,4 +4,9 @@ namespace factor
VM_C_API void box_boolean(bool value, factor_vm *vm);
VM_C_API bool to_boolean(cell value, factor_vm *vm);
inline cell factor_vm::tag_boolean(cell untagged)
{
return (untagged ? T : F);
}
}

View File

@ -1,4 +1,16 @@
namespace factor
{
struct growable_byte_array {
cell count;
gc_root<byte_array> elements;
growable_byte_array(factor_vm *myvm,cell capacity = 40) : count(0), elements(myvm->allot_byte_array(capacity),myvm) { }
void append_bytes(void *elts, cell len);
void append_byte_array(cell elts);
void trim();
};
}

View File

@ -8,4 +8,49 @@ inline static cell callstack_size(cell size)
VM_ASM_API void save_callstack_bottom(stack_frame *callstack_bottom, factor_vm *vm);
/* This is a little tricky. The iterator may allocate memory, so we
keep the callstack in a GC root and use relative offsets */
template<typename TYPE> void factor_vm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
gc_root<callstack> stack(stack_,this);
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
while(frame_offset >= 0)
{
stack_frame *frame = stack->frame_at(frame_offset);
frame_offset -= frame->size;
iterator(frame,this);
}
}
template<typename TYPE> void factor_vm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
stack_frame *frame = (stack_frame *)bottom - 1;
while((cell)frame >= top)
{
iterator(frame,this);
frame = frame_successor(frame);
}
}
/* Every object has a regular representation in the runtime, which makes GC
much simpler. Every slot of the object until binary_payload_start is a pointer
to some other object. */
struct factor_vm;
inline void factor_vm::do_slots(cell obj, void (* iter)(cell *,factor_vm*))
{
cell scan = obj;
cell payload_start = binary_payload_start((object *)obj);
cell end = obj + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan,this);
scan += sizeof(cell);
}
}
}

View File

@ -1,4 +1,11 @@
namespace factor
{
inline void factor_vm::check_code_pointer(cell ptr)
{
#ifdef FACTOR_DEBUG
assert(in_code_heap_p(ptr));
#endif
}
}

View File

@ -667,4 +667,68 @@ VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *myvm
VM_PTR->inline_gc(gc_roots_base,gc_roots_size);
}
inline object *factor_vm::allot_zone(zone *z, cell a)
{
cell h = z->here;
z->here = h + align8(a);
object *obj = (object *)h;
allot_barrier(obj);
return obj;
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
object *factor_vm::allot_object(header header, cell size)
{
#ifdef GC_DEBUG
if(!gc_off)
gc();
#endif
object *obj;
if(nursery.size - allot_buffer_zone > size)
{
/* If there is insufficient room, collect the nursery */
if(nursery.here + allot_buffer_zone + size > nursery.end)
garbage_collection(data->nursery(),false,0);
cell h = nursery.here;
nursery.here = h + align8(size);
obj = (object *)h;
}
/* If the object is bigger than the nursery, allocate it in
tenured space */
else
{
zone *tenured = &data->generations[data->tenured()];
/* If tenured space does not have enough room, collect */
if(tenured->here + size > tenured->end)
{
gc();
tenured = &data->generations[data->tenured()];
}
/* If it still won't fit, grow the heap */
if(tenured->here + size > tenured->end)
{
garbage_collection(data->tenured(),true,size);
tenured = &data->generations[data->tenured()];
}
obj = allot_zone(tenured,size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj);
}
obj->h = header;
return obj;
}
}

View File

@ -19,4 +19,41 @@ template <typename T> cell array_size(T *array)
return array_size<T>(array_capacity(array));
}
template <typename TYPE> TYPE *factor_vm::allot_array_internal(cell capacity)
{
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
array->capacity = tag_fixnum(capacity);
return array;
}
template <typename TYPE> bool factor_vm::reallot_array_in_place_p(TYPE *array, cell capacity)
{
return in_zone(&nursery,array) && capacity <= array_capacity(array);
}
template <typename TYPE> TYPE *factor_vm::reallot_array(TYPE *array_, cell capacity)
{
gc_root<TYPE> array(array_,this);
if(reallot_array_in_place_p(array.untagged(),capacity))
{
array->capacity = tag_fixnum(capacity);
return array.untagged();
}
else
{
cell to_copy = array_capacity(array.untagged());
if(capacity < to_copy)
to_copy = capacity;
TYPE *new_array = allot_array_internal<TYPE>(capacity);
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
0,(capacity - to_copy) * TYPE::element_size);
return new_array;
}
}
}

View File

@ -1,298 +0,0 @@
namespace factor
{
// I've had to copy inline implementations here to make dependencies work. Am hoping to move this code back into include files
// once the rest of the reentrant changes are done. -PD
//data_gc.hpp
inline bool factor_vm::collecting_accumulation_gen_p()
{
return ((data->have_aging_p()
&& collecting_gen == data->aging()
&& !collecting_aging_again)
|| collecting_gen == data->tenured());
}
inline object *factor_vm::allot_zone(zone *z, cell a)
{
cell h = z->here;
z->here = h + align8(a);
object *obj = (object *)h;
allot_barrier(obj);
return obj;
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
inline object *factor_vm::allot_object(header header, cell size)
{
#ifdef GC_DEBUG
if(!gc_off)
gc();
#endif
object *obj;
if(nursery.size - allot_buffer_zone > size)
{
/* If there is insufficient room, collect the nursery */
if(nursery.here + allot_buffer_zone + size > nursery.end)
garbage_collection(data->nursery(),false,0);
cell h = nursery.here;
nursery.here = h + align8(size);
obj = (object *)h;
}
/* If the object is bigger than the nursery, allocate it in
tenured space */
else
{
zone *tenured = &data->generations[data->tenured()];
/* If tenured space does not have enough room, collect */
if(tenured->here + size > tenured->end)
{
gc();
tenured = &data->generations[data->tenured()];
}
/* If it still won't fit, grow the heap */
if(tenured->here + size > tenured->end)
{
garbage_collection(data->tenured(),true,size);
tenured = &data->generations[data->tenured()];
}
obj = allot_zone(tenured,size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj);
}
obj->h = header;
return obj;
}
template<typename TYPE> TYPE *factor_vm::allot(cell size)
{
return (TYPE *)allot_object(header(TYPE::type_number),size);
}
inline void factor_vm::check_data_pointer(object *pointer)
{
#ifdef FACTOR_DEBUG
if(!growing_data_heap)
{
assert((cell)pointer >= data->seg->start
&& (cell)pointer < data->seg->end);
}
#endif
}
inline void factor_vm::check_tagged_pointer(cell tagged)
{
#ifdef FACTOR_DEBUG
if(!immediate_p(tagged))
{
object *obj = untag<object>(tagged);
check_data_pointer(obj);
obj->h.hi_tag();
}
#endif
}
//generic_arrays.hpp
template <typename TYPE> TYPE *factor_vm::allot_array_internal(cell capacity)
{
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
array->capacity = tag_fixnum(capacity);
return array;
}
template <typename TYPE> bool factor_vm::reallot_array_in_place_p(TYPE *array, cell capacity)
{
return in_zone(&nursery,array) && capacity <= array_capacity(array);
}
template <typename TYPE> TYPE *factor_vm::reallot_array(TYPE *array_, cell capacity)
{
gc_root<TYPE> array(array_,this);
if(reallot_array_in_place_p(array.untagged(),capacity))
{
array->capacity = tag_fixnum(capacity);
return array.untagged();
}
else
{
cell to_copy = array_capacity(array.untagged());
if(capacity < to_copy)
to_copy = capacity;
TYPE *new_array = allot_array_internal<TYPE>(capacity);
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
0,(capacity - to_copy) * TYPE::element_size);
return new_array;
}
}
//arrays.hpp
inline void factor_vm::set_array_nth(array *array, cell slot, cell value)
{
#ifdef FACTOR_DEBUG
assert(slot < array_capacity(array));
assert(array->h.hi_tag() == ARRAY_TYPE);
check_tagged_pointer(value);
#endif
array->data()[slot] = value;
write_barrier(array);
}
struct growable_array {
cell count;
gc_root<array> elements;
growable_array(factor_vm *myvm, cell capacity = 10) : count(0), elements(myvm->allot_array(capacity,F),myvm) {}
void add(cell elt);
void trim();
};
//byte_arrays.hpp
struct growable_byte_array {
cell count;
gc_root<byte_array> elements;
growable_byte_array(factor_vm *myvm,cell capacity = 40) : count(0), elements(myvm->allot_byte_array(capacity),myvm) { }
void append_bytes(void *elts, cell len);
void append_byte_array(cell elts);
void trim();
};
//math.hpp
inline cell factor_vm::allot_integer(fixnum x)
{
if(x < fixnum_min || x > fixnum_max)
return tag<bignum>(fixnum_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell factor_vm::allot_cell(cell x)
{
if(x > (cell)fixnum_max)
return tag<bignum>(cell_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell factor_vm::allot_float(double n)
{
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
flo->n = n;
return tag(flo);
}
inline bignum *factor_vm::float_to_bignum(cell tagged)
{
return double_to_bignum(untag_float(tagged));
}
inline double factor_vm::bignum_to_float(cell tagged)
{
return bignum_to_double(untag<bignum>(tagged));
}
inline double factor_vm::untag_float(cell tagged)
{
return untag<boxed_float>(tagged)->n;
}
inline double factor_vm::untag_float_check(cell tagged)
{
return untag_check<boxed_float>(tagged)->n;
}
inline fixnum factor_vm::float_to_fixnum(cell tagged)
{
return (fixnum)untag_float(tagged);
}
inline double factor_vm::fixnum_to_float(cell tagged)
{
return (double)untag_fixnum(tagged);
}
//callstack.hpp
/* This is a little tricky. The iterator may allocate memory, so we
keep the callstack in a GC root and use relative offsets */
template<typename TYPE> void factor_vm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
gc_root<callstack> stack(stack_,this);
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
while(frame_offset >= 0)
{
stack_frame *frame = stack->frame_at(frame_offset);
frame_offset -= frame->size;
iterator(frame,this);
}
}
//booleans.hpp
inline cell factor_vm::tag_boolean(cell untagged)
{
return (untagged ? T : F);
}
// callstack.hpp
template<typename TYPE> void factor_vm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
stack_frame *frame = (stack_frame *)bottom - 1;
while((cell)frame >= top)
{
iterator(frame,this);
frame = frame_successor(frame);
}
}
// data_heap.hpp
/* Every object has a regular representation in the runtime, which makes GC
much simpler. Every slot of the object until binary_payload_start is a pointer
to some other object. */
struct factor_vm;
inline void factor_vm::do_slots(cell obj, void (* iter)(cell *,factor_vm*))
{
cell scan = obj;
cell payload_start = binary_payload_start((object *)obj);
cell end = obj + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan,this);
scan += sizeof(cell);
}
}
// code_heap.hpp
inline void factor_vm::check_code_pointer(cell ptr)
{
#ifdef FACTOR_DEBUG
assert(in_code_heap_p(ptr));
#endif
}
}

View File

@ -1,7 +1,6 @@
namespace factor
{
//local_roots.hpp
template <typename TYPE>
struct gc_root : public tagged<TYPE>
{

View File

@ -52,26 +52,25 @@
#include "data_heap.hpp"
#include "write_barrier.hpp"
#include "data_gc.hpp"
#include "generic_arrays.hpp"
#include "debug.hpp"
#include "arrays.hpp"
#include "strings.hpp"
#include "booleans.hpp"
#include "byte_arrays.hpp"
#include "tuples.hpp"
#include "words.hpp"
#include "math.hpp"
#include "float_bits.hpp"
#include "io.hpp"
#include "heap.hpp"
#include "code_heap.hpp"
#include "image.hpp"
#include "callstack.hpp"
#include "alien.hpp"
#include "vm.hpp"
#include "tagged.hpp"
#include "local_roots.hpp"
#include "inlineimpls.hpp"
#include "callstack.hpp"
#include "generic_arrays.hpp"
#include "arrays.hpp"
#include "math.hpp"
#include "booleans.hpp"
#include "code_heap.hpp"
#include "byte_arrays.hpp"
#include "jit.hpp"
#include "quotations.hpp"
#include "dispatch.hpp"

View File

@ -5,12 +5,61 @@ static const fixnum fixnum_max = (((fixnum)1 << (WORD_SIZE - TAG_BITS - 1)) - 1)
static const fixnum fixnum_min = (-((fixnum)1 << (WORD_SIZE - TAG_BITS - 1)));
static const fixnum array_size_max = ((cell)1 << (WORD_SIZE - TAG_BITS - 2));
inline cell factor_vm::allot_integer(fixnum x)
{
if(x < fixnum_min || x > fixnum_max)
return tag<bignum>(fixnum_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell factor_vm::allot_cell(cell x)
{
if(x > (cell)fixnum_max)
return tag<bignum>(cell_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell factor_vm::allot_float(double n)
{
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
flo->n = n;
return tag(flo);
}
inline bignum *factor_vm::float_to_bignum(cell tagged)
{
return double_to_bignum(untag_float(tagged));
}
inline double factor_vm::bignum_to_float(cell tagged)
{
return bignum_to_double(untag<bignum>(tagged));
}
inline double factor_vm::untag_float(cell tagged)
{
return untag<boxed_float>(tagged)->n;
}
inline double factor_vm::untag_float_check(cell tagged)
{
return untag_check<boxed_float>(tagged)->n;
}
inline fixnum factor_vm::float_to_fixnum(cell tagged)
{
return (fixnum)untag_float(tagged);
}
inline double factor_vm::fixnum_to_float(cell tagged)
{
return (double)untag_fixnum(tagged);
}
// defined in assembler
VM_C_API void box_float(float flo, factor_vm *vm);
VM_C_API float to_float(cell value, factor_vm *vm);
VM_C_API void box_double(double flo, factor_vm *vm);

View File

@ -101,20 +101,20 @@ struct factor_vm
void bignum_destructive_add(bignum * bignum, bignum_digit_type n);
void bignum_destructive_scale_up(bignum * bignum, bignum_digit_type factor);
void bignum_divide_unsigned_large_denominator(bignum * numerator, bignum * denominator,
bignum * * quotient, bignum * * remainder, int q_negative_p, int r_negative_p);
bignum * * quotient, bignum * * remainder, int q_negative_p, int r_negative_p);
void bignum_divide_unsigned_normalized(bignum * u, bignum * v, bignum * q);
bignum_digit_type bignum_divide_subtract(bignum_digit_type * v_start, bignum_digit_type * v_end,
bignum_digit_type guess, bignum_digit_type * u_start);
bignum_digit_type guess, bignum_digit_type * u_start);
void bignum_divide_unsigned_medium_denominator(bignum * numerator,bignum_digit_type denominator,
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
void bignum_destructive_normalization(bignum * source, bignum * target, int shift_left);
void bignum_destructive_unnormalization(bignum * bignum, int shift_right);
bignum_digit_type bignum_digit_divide(bignum_digit_type uh, bignum_digit_type ul,
bignum_digit_type v, bignum_digit_type * q) /* return value */;
bignum_digit_type v, bignum_digit_type * q) /* return value */;
bignum_digit_type bignum_digit_divide_subtract(bignum_digit_type v1, bignum_digit_type v2,
bignum_digit_type guess, bignum_digit_type * u);
bignum_digit_type guess, bignum_digit_type * u);
void bignum_divide_unsigned_small_denominator(bignum * numerator, bignum_digit_type denominator,
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
bignum * * quotient, bignum * * remainder,int q_negative_p, int r_negative_p);
bignum_digit_type bignum_destructive_scale_down(bignum * bignum, bignum_digit_type denominator);
bignum * bignum_remainder_unsigned_small_denominator(bignum * n, bignum_digit_type d, int negative_p);
bignum *bignum_digit_to_bignum(bignum_digit_type digit, int negative_p);
@ -171,7 +171,6 @@ struct factor_vm
template<typename T> void each_object(T &functor);
cell find_all_words();
cell object_size(cell tagged);
//write barrier
cell allot_markers_offset;
@ -282,14 +281,46 @@ struct factor_vm
void clear_gc_stats();
void primitive_become();
void inline_gc(cell *gc_roots_base, cell gc_roots_size);
inline bool collecting_accumulation_gen_p();
inline object *allot_zone(zone *z, cell a);
inline object *allot_object(header header, cell size);
template <typename TYPE> TYPE *allot(cell size);
inline void check_data_pointer(object *pointer);
inline void check_tagged_pointer(cell tagged);
object *allot_object(header header, cell size);
void primitive_clear_gc_stats();
template<typename TYPE> TYPE *allot(cell size)
{
return (TYPE *)allot_object(header(TYPE::type_number),size);
}
inline bool collecting_accumulation_gen_p()
{
return ((data->have_aging_p()
&& collecting_gen == data->aging()
&& !collecting_aging_again)
|| collecting_gen == data->tenured());
}
inline void check_data_pointer(object *pointer)
{
#ifdef FACTOR_DEBUG
if(!growing_data_heap)
{
assert((cell)pointer >= data->seg->start
&& (cell)pointer < data->seg->end);
}
#endif
}
inline void check_tagged_pointer(cell tagged)
{
#ifdef FACTOR_DEBUG
if(!immediate_p(tagged))
{
object *obj = untag<object>(tagged);
check_data_pointer(obj);
obj->h.hi_tag();
}
#endif
}
// local roots
/* If a runtime function needs to call another function which potentially
allocates memory, it must wrap any local variable references to Factor