math.integers, comment and simplify bignum/f

change the "while" that could only execute once to "when"
change the f/loop word name to "mantissa-and-guard" since it's what it
computes
change the check against 2^53 to be explicit
db4
Jon Harper 2015-07-26 21:11:29 +02:00 committed by John Benediktsson
parent 5424ad5586
commit 53efceb0ad
2 changed files with 52 additions and 19 deletions

View File

@ -279,3 +279,6 @@ IN: math.integers.tests
{ 0x0.8p-1022 } [ 8 1026 2^ /f ] unit-test { 0x0.8p-1022 } [ 8 1026 2^ /f ] unit-test
{ 0x0.6p-1022 } [ 6 1026 2^ /f ] unit-test { 0x0.6p-1022 } [ 6 1026 2^ /f ] unit-test
{ 0x0.4p-1022 } [ 4 1026 2^ /f ] unit-test { 0x0.4p-1022 } [ 4 1026 2^ /f ] unit-test
! rounding triggering special case in post-scale
{ 1.0 } [ 300 2^ 1 - 300 2^ /f ] unit-test

View File

@ -116,6 +116,16 @@ M: bignum (log2) bignum-log2 ; inline
! provided with absolutely no warranty." ! provided with absolutely no warranty."
! First step: pre-scaling ! First step: pre-scaling
! As an optimization to minimize the size of the operands of the bignum
! divisions we will do, we start by stripping any trailing zeros from
! the denominator and move it into the scale factor.
! We want a result in ]2^54;2^53] to find the mantissa
! in ]2^53,2^52] with 1 extra "guard" bit for rounding.
! So we shift the numerator to get the result of the integer division
! "num/den" in the range ]2^54; 2^53]; Our shift is only a guess
! based on the magnitude of the inputs, so it
! will actually give results in the range ]2^55; 2^53].
! Note: epsilon is used for rounding in step 3.
: twos ( x -- y ) dup 1 - bitxor log2 ; inline : twos ( x -- y ) dup 1 - bitxor log2 ; inline
: scale-denonimator ( den -- scaled-den scale' ) : scale-denonimator ( den -- scaled-den scale' )
@ -129,33 +139,37 @@ M: bignum (log2) bignum-log2 ; inline
54 + [ (epsilon?) ] [ shift ] 2bi 54 + [ (epsilon?) ] [ shift ] 2bi
] keep ; inline ] keep ; inline
: pre-scale ( num den -- epsilon? mantissa den' scale ) : pre-scale ( num den -- epsilon? num' den' scale )
scale-denonimator [ scale-denonimator [
[ scale-numerator ] keep swap [ scale-numerator ] keep swap
] dip swap - ; inline ] dip swap - ; inline
! Second step: loop ! Second step: compute mantissa
! "num/den" would be in the range ]2^55; 2^53]. After this step
! it will be in the range ]2^54; 2^53]. Compute "num/den" and the
! reminder used for rounding
: (2/-with-epsilon) ( epsilon? num -- epsilon?' num' ) : (2/-with-epsilon) ( epsilon? num -- epsilon?' num' )
[ 1 bitand zero? not or ] [ 2/ ] bi ; inline [ 1 bitand zero? not or ] [ 2/ ] bi ; inline
: /f-loop ( epsilon? mantissa den scale -- epsilon?' fraction-and-guard rem scale' ) : mantissa-and-guard ( epsilon? num den scale -- epsilon?' mantissa-and-guard rem scale' )
[ 2over /i log2 53 > ] 2over /i log2 53 >
[ [ (2/-with-epsilon) ] [ ] [ 1 + ] tri* ] while [ [ (2/-with-epsilon) ] [ ] [ 1 + ] tri* ] when
[ /mod ] dip ; inline [ /mod ] dip ; inline
! Third step: post-scaling ! Third step: rounding
: scale-float ( mantissa scale -- float' ) !
{ ! if the guard bit is 0, round down
{ [ dup 1024 > ] [ 2drop 1/0. ] } ! else if the guard bit is 1 and (rem != 0 or epsilon is true), round up
{ [ dup -1021 < ] [ 1021 + shift bits>double ] } ! else break the tie by alternating rounding down or up to avoid accumulating errors
[ [ 52 2^ 1 - bitand ] dip 1022 + 52 shift bitor bits>double ] !
} cond ; inline ! The epsilon trick works because epsilon is true if numerator bits were discarded.
! Mathematically, (num+epsilon)/denom = (num/denum) + (epsilon/denom)
: post-scale ( mantissa scale -- n ) ! We have actually computed the "num/denum" part and use the "epsilon/denom"
[ 2/ ] dip over log2 52 > [ [ 2/ ] [ 1 + ] bi* ] when ! to choose the correct rounding.
scale-float ; inline !
! Note that rounding down means doing nothing because we will
: round-to-nearest ( epsilon? fraction-and-guard rem -- fraction-and-guard' ) ! discard the guard bit after this
: round-to-nearest ( epsilon? mantissa-and-guard rem -- mantissa-and-guard' )
over odd? over odd?
[ [
zero? [ zero? [
@ -164,12 +178,28 @@ M: bignum (log2) bignum-log2 ; inline
] [ drop nip ] if ; ] [ drop nip ] if ;
inline inline
! Fourth step: post-scaling
! Because of rounding, our mantissa with guard bit is now in the
! range [2^54;2^53], so we have to handle 2^54 specially.
: scale-float ( mantissa scale -- float' )
! At this point, the scale value is the exponent minus 1.
{
{ [ dup 1024 > ] [ 2drop 1/0. ] }
{ [ dup -1021 < ] [ 1021 + shift bits>double ] } ! subnormals and underflow
[ [ 52 2^ 1 - bitand ] dip 1022 + 52 shift bitor bits>double ]
} cond ; inline
: post-scale ( mantissa scale -- n )
[ 2/ ] dip ! drop guard bit
over 53 2^ = [ [ 2/ ] [ 1 + ] bi* ] when
scale-float ; inline
! Main word ! Main word
: /f-abs ( m n -- f ) : /f-abs ( m n -- f )
over zero? [ nip zero? 0/0. 0.0 ? ] [ over zero? [ nip zero? 0/0. 0.0 ? ] [
[ drop 1/0. ] [ [ drop 1/0. ] [
pre-scale pre-scale
/f-loop mantissa-and-guard
[ round-to-nearest ] dip [ round-to-nearest ] dip
post-scale post-scale
] if-zero ] if-zero