Code GC: segregated free list for faster allocation, combine unmark/build free list/update literals passes into one pass for faster deallocation

db4
Slava Pestov 2009-04-26 09:15:58 -05:00
parent c2490f4038
commit 5f756a8019
3 changed files with 119 additions and 70 deletions

View File

@ -1,5 +1,10 @@
#include "master.h"
static void clear_free_list(F_HEAP *heap)
{
memset(&heap->free,0,sizeof(F_HEAP_FREE_LIST));
}
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
will be used for the data heap too, if we ever get incremental
mark/sweep/compact GC. */
@ -8,17 +13,23 @@ void new_heap(F_HEAP *heap, CELL size)
heap->segment = alloc_segment(align_page(size));
if(!heap->segment)
fatal_error("Out of memory in new_heap",size);
heap->free_list = NULL;
clear_free_list(heap);
}
/* If there is no previous block, next_free becomes the head of the free list,
else its linked in */
INLINE void update_free_list(F_HEAP *heap, F_FREE_BLOCK *prev, F_FREE_BLOCK *next_free)
void add_to_free_list(F_HEAP *heap, F_FREE_BLOCK *block)
{
if(prev)
prev->next_free = next_free;
if(block->block.size < FREE_LIST_COUNT * BLOCK_SIZE_INCREMENT)
{
int index = block->block.size / BLOCK_SIZE_INCREMENT;
block->next_free = heap->free.small[index];
heap->free.small[index] = block;
}
else
heap->free_list = next_free;
{
block->next_free = heap->free.large;
heap->free.large = block;
}
}
/* Called after reading the code heap from the image file, and after code GC.
@ -28,7 +39,11 @@ compiling.limit. */
void build_free_list(F_HEAP *heap, CELL size)
{
F_BLOCK *prev = NULL;
F_FREE_BLOCK *prev_free = NULL;
clear_free_list(heap);
size = (size + BLOCK_SIZE_INCREMENT - 1) & ~(BLOCK_SIZE_INCREMENT - 1);
F_BLOCK *scan = first_block(heap);
F_FREE_BLOCK *end = (F_FREE_BLOCK *)(heap->segment->start + size);
@ -38,8 +53,7 @@ void build_free_list(F_HEAP *heap, CELL size)
switch(scan->status)
{
case B_FREE:
update_free_list(heap,prev_free,(F_FREE_BLOCK *)scan);
prev_free = (F_FREE_BLOCK *)scan;
add_to_free_list(heap,(F_FREE_BLOCK *)scan);
break;
case B_ALLOCATED:
break;
@ -58,10 +72,9 @@ void build_free_list(F_HEAP *heap, CELL size)
{
end->block.status = B_FREE;
end->block.size = heap->segment->end - (CELL)end;
end->next_free = NULL;
/* add final free block */
update_free_list(heap,prev_free,end);
add_to_free_list(heap,end);
}
/* This branch is taken if the newly loaded image fits exactly, or
after code GC */
@ -70,63 +83,88 @@ void build_free_list(F_HEAP *heap, CELL size)
/* even if there's no room at the end of the heap for a new
free block, we might have to jigger it up by a few bytes in
case prev + prev->size */
if(prev)
prev->size = heap->segment->end - (CELL)prev;
/* this is the last free block */
update_free_list(heap,prev_free,NULL);
if(prev) prev->size = heap->segment->end - (CELL)prev;
}
}
static void assert_free_block(F_FREE_BLOCK *block)
{
if(block->block.status != B_FREE)
critical_error("Invalid block in free list",(CELL)block);
}
F_FREE_BLOCK *find_free_block(F_HEAP *heap, CELL size)
{
CELL attempt = size;
while(attempt < FREE_LIST_COUNT * BLOCK_SIZE_INCREMENT)
{
int index = attempt / BLOCK_SIZE_INCREMENT;
F_FREE_BLOCK *block = heap->free.small[index];
if(block)
{
assert_free_block(block);
heap->free.small[index] = block->next_free;
return block;
}
attempt *= 2;
}
F_FREE_BLOCK *prev = NULL;
F_FREE_BLOCK *block = heap->free.large;
while(block)
{
assert_free_block(block);
if(block->block.size >= size)
{
if(prev)
prev->next_free = block->next_free;
else
heap->free.large = block->next_free;
return block;
}
prev = block;
block = block->next_free;
}
return NULL;
}
F_FREE_BLOCK *split_free_block(F_HEAP *heap, F_FREE_BLOCK *block, CELL size)
{
if(block->block.size != size )
{
/* split the block in two */
F_FREE_BLOCK *split = (F_FREE_BLOCK *)((CELL)block + size);
split->block.status = B_FREE;
split->block.size = block->block.size - size;
split->next_free = block->next_free;
block->block.size = size;
add_to_free_list(heap,split);
}
return block;
}
/* Allocate a block of memory from the mark and sweep GC heap */
F_BLOCK *heap_allot(F_HEAP *heap, CELL size)
{
F_FREE_BLOCK *prev = NULL;
F_FREE_BLOCK *scan = heap->free_list;
size = (size + BLOCK_SIZE_INCREMENT - 1) & ~(BLOCK_SIZE_INCREMENT - 1);
size = (size + 31) & ~31;
while(scan)
F_FREE_BLOCK *block = find_free_block(heap,size);
if(block)
{
if(scan->block.status != B_FREE)
critical_error("Invalid block in free list",(CELL)scan);
block = split_free_block(heap,block,size);
if(scan->block.size < size)
{
prev = scan;
scan = scan->next_free;
continue;
}
/* we found a candidate block */
F_FREE_BLOCK *next_free;
if(scan->block.size - size <= sizeof(F_BLOCK) * 2)
{
/* too small to be split */
next_free = scan->next_free;
}
else
{
/* split the block in two */
F_FREE_BLOCK *split = (F_FREE_BLOCK *)((CELL)scan + size);
split->block.status = B_FREE;
split->block.size = scan->block.size - size;
split->next_free = scan->next_free;
scan->block.size = size;
next_free = split;
}
/* update the free list */
update_free_list(heap,prev,next_free);
/* this is our new block */
scan->block.status = B_ALLOCATED;
return &scan->block;
block->block.status = B_ALLOCATED;
return &block->block;
}
return NULL;
else
return NULL;
}
void mark_block(F_BLOCK *block)
@ -162,8 +200,10 @@ void unmark_marked(F_HEAP *heap)
/* After code GC, all referenced code blocks have status set to B_MARKED, so any
which are allocated and not marked can be reclaimed. */
void free_unmarked(F_HEAP *heap)
void free_unmarked(F_HEAP *heap, HEAP_ITERATOR iter)
{
clear_free_list(heap);
F_BLOCK *prev = NULL;
F_BLOCK *scan = first_block(heap);
@ -183,10 +223,15 @@ void free_unmarked(F_HEAP *heap)
case B_FREE:
if(prev && prev->status == B_FREE)
prev->size += scan->size;
else
prev = scan;
break;
case B_MARKED:
if(prev && prev->status == B_FREE)
add_to_free_list(heap,(F_FREE_BLOCK *)prev);
scan->status = B_ALLOCATED;
prev = scan;
iter(scan);
break;
default:
critical_error("Invalid scan->status",(CELL)scan);
@ -195,7 +240,8 @@ void free_unmarked(F_HEAP *heap)
scan = next_block(heap,scan);
}
build_free_list(heap,heap->segment->size);
if(prev && prev->status == B_FREE)
add_to_free_list(heap,(F_FREE_BLOCK *)prev);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */

View File

@ -1,14 +1,24 @@
#define FREE_LIST_COUNT 16
#define BLOCK_SIZE_INCREMENT 32
typedef struct {
F_FREE_BLOCK *small[FREE_LIST_COUNT];
F_FREE_BLOCK *large;
} F_HEAP_FREE_LIST;
typedef struct {
F_SEGMENT *segment;
F_FREE_BLOCK *free_list;
F_HEAP_FREE_LIST free;
} F_HEAP;
typedef void (*HEAP_ITERATOR)(F_BLOCK *compiled);
void new_heap(F_HEAP *heap, CELL size);
void build_free_list(F_HEAP *heap, CELL size);
F_BLOCK *heap_allot(F_HEAP *heap, CELL size);
void mark_block(F_BLOCK *block);
void unmark_marked(F_HEAP *heap);
void free_unmarked(F_HEAP *heap);
void free_unmarked(F_HEAP *heap, HEAP_ITERATOR iter);
void heap_usage(F_HEAP *heap, CELL *used, CELL *total_free, CELL *max_free);
CELL heap_size(F_HEAP *heap);
CELL compute_heap_forwarding(F_HEAP *heap);

View File

@ -416,13 +416,6 @@ void end_gc(CELL gc_elapsed)
reset_generations(NURSERY,collecting_gen);
}
if(collecting_gen == TENURED)
{
/* now that all reachable code blocks have been marked,
deallocate the rest */
free_unmarked(&code_heap);
}
collecting_aging_again = false;
}
@ -491,7 +484,7 @@ void garbage_collection(CELL gen,
code_heap_scans++;
if(collecting_gen == TENURED)
update_code_heap_roots();
free_unmarked(&code_heap,(HEAP_ITERATOR)update_literal_references);
else
copy_code_heap_roots();