Slava Pestov 2008-04-17 04:52:36 -05:00
commit 6746bd3d53
3 changed files with 141 additions and 0 deletions

View File

@ -0,0 +1,55 @@
! Copyright (c) 2008 Eric Mertens
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math math.ranges sequences sequences.lib ;
IN: project-euler.116
! http://projecteuler.net/index.php?section=problems&id=116
! DESCRIPTION
! -----------
! A row of five black square tiles is to have a number of its tiles replaced
! with coloured oblong tiles chosen from red (length two), green (length
! three), or blue (length four).
! If red tiles are chosen there are exactly seven ways this can be done.
! If green tiles are chosen there are three ways.
! And if blue tiles are chosen there are two ways.
! Assuming that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of
! replacing the black tiles in a row measuring five units in length.
! How many different ways can the black tiles in a row measuring fifty units in
! length be replaced if colours cannot be mixed and at least one coloured tile
! must be used?
! SOLUTION
! --------
! This solution uses a simple dynamic programming approach using the
! following recurence relation
! ways(n,_) = 0 | n < 0
! ways(0,_) = 1
! ways(n,i) = ways(n-i,i) + ways(n-1,i)
! solution(n) = ways(n,1) - 1 + ways(n,2) - 1 + ways(n,3) - 1
<PRIVATE
: nth* ( n seq -- elt/0 )
[ length swap - 1- ] keep ?nth 0 or ;
: next ( colortile seq -- )
[ nth* ] [ peek + ] [ push ] tri ;
: ways ( length colortile -- permutations )
V{ 1 } clone [ [ next ] 2curry times ] keep peek 1- ;
PRIVATE>
: (euler116) ( length -- permutations )
3 [1,b] [ ways ] with sigma ;
: euler116 ( -- permutations )
50 (euler116) ;

View File

@ -0,0 +1,42 @@
! Copyright (c) 2008 Eric Mertens
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math splitting sequences ;
IN: project-euler.117
! http://projecteuler.net/index.php?section=problems&id=117
! DESCRIPTION
! -----------
! Using a combination of black square tiles and oblong tiles chosen
! from: red tiles measuring two units, green tiles measuring three
! units, and blue tiles measuring four units, it is possible to tile a
! row measuring five units in length in exactly fifteen different ways.
! How many ways can a row measuring fifty units in length be tiled?
! SOLUTION
! --------
! This solution uses a simple dynamic programming approach using the
! following recurence relation
! ways(i) = 1 | i <= 0
! ways(i) = ways(i-4) + ways(i-3) + ways(i-2) + ways(i-1)
<PRIVATE
: short ( seq n -- seq n )
over length min ;
: next ( seq -- )
[ 4 short tail* sum ] keep push ;
PRIVATE>
: (euler117) ( n -- m )
V{ 1 } clone tuck [ next ] curry times peek ;
: euler117 ( -- m )
50 (euler117) ;

View File

@ -0,0 +1,44 @@
! Copyright (c) 2008 Eric Mertens
! See http://factorcode.org/license.txt for BSD license.
USING: kernel math sequences locals ;
IN: project-euler.150
<PRIVATE
! sequence helper functions
: partial-sums ( seq -- seq )
0 [ + ] accumulate swap suffix ; inline
: generate ( n quot -- seq )
[ drop ] swap compose map ; inline
: map-infimum ( seq quot -- min )
[ min ] compose 0 swap reduce ; inline
! triangle generator functions
: next ( t -- new-t s )
615949 * 797807 + 1 20 shift mod dup 1 19 shift - ; inline
: sums-triangle ( -- seq )
0 1000 [ 1+ [ next ] generate partial-sums ] map nip ;
PRIVATE>
:: (euler150) ( m -- n )
[let | table [ sums-triangle ] |
m [| x |
x 1+ [| y |
m x - [| z |
x z + table nth
[ y z + 1+ swap nth ]
[ y swap nth ] bi -
] map partial-sums infimum
] map-infimum
] map-infimum
] ;
: euler150 ( -- n )
1000 (euler150) ;