vm: code heap: move mark bits to a separate bitmap

db4
Slava Pestov 2009-10-16 14:41:40 -05:00
parent 3d95494c1e
commit 69f9c80b5b
10 changed files with 235 additions and 183 deletions

View File

@ -296,7 +296,7 @@ void factor_vm::dump_code_heap()
const char *status;
if(scan->type() == FREE_BLOCK_TYPE)
status = "free";
else if(scan->marked_p())
else if(code->state->is_marked_p(scan))
{
reloc_size += object_size(((code_block *)scan)->relocation);
literal_size += object_size(((code_block *)scan)->literals);

View File

@ -134,6 +134,8 @@ void factor_vm::collect_full_impl(bool trace_contexts_p)
{
full_collector collector(this);
code->state->clear_mark_bits();
collector.trace_roots();
if(trace_contexts_p)
{
@ -148,16 +150,6 @@ void factor_vm::collect_full_impl(bool trace_contexts_p)
nursery.here = nursery.start;
}
/* In both cases, compact code heap before updating code blocks so that
XTs are correct after */
void factor_vm::big_code_heap_update()
{
big_code_heap_updater updater(this);
code->free_unmarked(updater);
code->clear_remembered_set();
}
void factor_vm::collect_growing_heap(cell requested_bytes,
bool trace_contexts_p,
bool compact_code_heap_p)
@ -168,15 +160,18 @@ void factor_vm::collect_growing_heap(cell requested_bytes,
collect_full_impl(trace_contexts_p);
delete old;
if(compact_code_heap_p) compact_code_heap(trace_contexts_p);
if(compact_code_heap_p)
{
compact_code_heap(trace_contexts_p);
big_code_heap_updater updater(this);
iterate_code_heap(updater);
}
else
{
big_code_heap_updater updater(this);
code->free_unmarked(updater);
}
big_code_heap_update();
}
void factor_vm::small_code_heap_update()
{
small_code_heap_updater updater(this);
code->free_unmarked(updater);
code->clear_remembered_set();
}
@ -190,10 +185,16 @@ void factor_vm::collect_full(bool trace_contexts_p, bool compact_code_heap_p)
if(compact_code_heap_p)
{
compact_code_heap(trace_contexts_p);
big_code_heap_update();
big_code_heap_updater updater(this);
iterate_code_heap(updater);
}
else
small_code_heap_update();
{
small_code_heap_updater updater(this);
code->free_unmarked(updater);
}
code->clear_remembered_set();
}
}

View File

@ -54,9 +54,6 @@ void factor_vm::gc(gc_op op,
current_gc->op = collect_full_op;
break;
case collect_full_op:
/* Since we start tracing again, any previously
marked code blocks must be re-marked and re-traced */
code->clear_mark_bits();
current_gc->op = collect_growing_heap_op;
break;
default:

View File

@ -16,9 +16,18 @@ heap::heap(bool secure_gc_, cell size, bool executable_p) : secure_gc(secure_gc_
if(size > (1L << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
seg = new segment(align_page(size),executable_p);
if(!seg) fatal_error("Out of memory in heap allocator",size);
state = new mark_bits<heap_block,block_size_increment>(seg->start,size);
clear_free_list();
}
heap::~heap()
{
delete seg;
seg = NULL;
delete state;
state = NULL;
}
void heap::add_to_free_list(free_heap_block *block)
{
if(block->size() < free_list_count * block_size_increment)
@ -34,52 +43,15 @@ void heap::add_to_free_list(free_heap_block *block)
}
}
/* Called after reading the code heap from the image file, and after code GC.
In the former case, we must add a large free block from compiling.base + size to
compiling.limit. */
/* Called after reading the code heap from the image file, and after code heap
compaction. Makes a free list consisting of one free block, at the very end. */
void heap::build_free_list(cell size)
{
heap_block *prev = NULL;
clear_free_list();
size = (size + block_size_increment - 1) & ~(block_size_increment - 1);
heap_block *scan = first_block();
free_heap_block *end = (free_heap_block *)(seg->start + size);
/* Add all free blocks to the free list */
while(scan && scan < (heap_block *)end)
{
if(scan->type() == FREE_BLOCK_TYPE)
add_to_free_list((free_heap_block *)scan);
prev = scan;
scan = next_block(scan);
}
/* If there is room at the end of the heap, add a free block. This
branch is only taken after loading a new image, not after code GC */
if((cell)(end + 1) <= seg->end)
{
end->set_marked_p(false);
end->set_type(FREE_BLOCK_TYPE);
end->set_size(seg->end - (cell)end);
/* add final free block */
add_to_free_list(end);
}
/* This branch is taken if the newly loaded image fits exactly, or
after code GC */
else
{
/* even if there's no room at the end of the heap for a new
free block, we might have to jigger it up by a few bytes in
case prev + prev->size */
if(prev) prev->set_size(seg->end - (cell)prev);
}
end->set_type(FREE_BLOCK_TYPE);
end->set_size(seg->end - (cell)end);
add_to_free_list(end);
}
void heap::assert_free_block(free_heap_block *block)
@ -154,7 +126,6 @@ heap_block *heap::heap_allot(cell size, cell type)
{
block = split_free_block(block,size);
block->set_type(type);
block->set_marked_p(false);
return block;
}
else
@ -170,18 +141,7 @@ void heap::heap_free(heap_block *block)
void heap::mark_block(heap_block *block)
{
block->set_marked_p(true);
}
void heap::clear_mark_bits()
{
heap_block *scan = first_block();
while(scan)
{
scan->set_marked_p(false);
scan = next_block(scan);
}
state->set_marked_p(block,true);
}
/* Compute total sum of sizes of free blocks, and size of largest free block */
@ -210,20 +170,21 @@ void heap::heap_usage(cell *used, cell *total_free, cell *max_free)
}
}
/* The size of the heap, not including the last block if it's free */
/* The size of the heap after compaction */
cell heap::heap_size()
{
heap_block *scan = first_block();
while(scan)
{
if(scan->type() == FREE_BLOCK_TYPE) break;
else scan = next_block(scan);
}
while(next_block(scan) != NULL)
scan = next_block(scan);
assert(scan->type() == FREE_BLOCK_TYPE);
assert((cell)scan + scan->size() == seg->end);
/* this is the last block in the heap, and it is free */
if(scan->type() == FREE_BLOCK_TYPE)
return (cell)scan - seg->start;
/* otherwise the last block is allocated */
else
return seg->size;
return (cell)scan - (cell)first_block();
}
void heap::compact_heap()
@ -238,7 +199,7 @@ void heap::compact_heap()
{
heap_block *next = next_block(scan);
if(scan->type() != FREE_BLOCK_TYPE && scan->marked_p())
if(state->is_marked_p(scan))
{
cell size = scan->size();
memmove(address,scan,size);

View File

@ -13,9 +13,11 @@ struct heap {
bool secure_gc;
segment *seg;
heap_free_list free;
mark_bits<heap_block,block_size_increment> *state;
unordered_map<heap_block *, char *> forwarding;
explicit heap(bool secure_gc_, cell size, bool executable_p);
~heap();
inline heap_block *next_block(heap_block *block)
{
@ -46,7 +48,6 @@ struct heap {
heap_block *heap_allot(cell size, cell type);
void heap_free(heap_block *block);
void mark_block(heap_block *block);
void clear_mark_bits();
void heap_usage(cell *used, cell *total_free, cell *max_free);
cell heap_size();
void compact_heap();
@ -71,11 +72,10 @@ struct heap {
else
prev = scan;
}
else if(scan->marked_p())
else if(state->is_marked_p(scan))
{
if(prev && prev->type() == FREE_BLOCK_TYPE)
add_to_free_list((free_heap_block *)prev);
scan->set_marked_p(false);
prev = scan;
iter(scan);
}

View File

@ -67,86 +67,6 @@ void factor_vm::load_code_heap(FILE *file, image_header *h, vm_parameters *p)
code->build_free_list(h->code_size);
}
/* Save the current image to disk */
bool factor_vm::save_image(const vm_char *filename)
{
FILE* file;
image_header h;
file = OPEN_WRITE(filename);
if(file == NULL)
{
print_string("Cannot open image file: "); print_native_string(filename); nl();
print_string(strerror(errno)); nl();
return false;
}
h.magic = image_magic;
h.version = image_version;
h.data_relocation_base = data->tenured->start;
h.data_size = data->tenured->here - data->tenured->start;
h.code_relocation_base = code->seg->start;
h.code_size = code->heap_size();
h.t = T;
h.bignum_zero = bignum_zero;
h.bignum_pos_one = bignum_pos_one;
h.bignum_neg_one = bignum_neg_one;
for(cell i = 0; i < USER_ENV; i++)
h.userenv[i] = (save_env_p(i) ? userenv[i] : F);
bool ok = true;
if(fwrite(&h,sizeof(image_header),1,file) != 1) ok = false;
if(fwrite((void*)data->tenured->start,h.data_size,1,file) != 1) ok = false;
if(fwrite(code->first_block(),h.code_size,1,file) != 1) ok = false;
if(fclose(file)) ok = false;
if(!ok)
{
print_string("save-image failed: "); print_string(strerror(errno)); nl();
}
return ok;
}
void factor_vm::primitive_save_image()
{
/* do a full GC to push everything into tenured space */
primitive_compact_gc();
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
save_image((vm_char *)(path.untagged() + 1));
}
void factor_vm::primitive_save_image_and_exit()
{
/* We unbox this before doing anything else. This is the only point
where we might throw an error, so we have to throw an error here since
later steps destroy the current image. */
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
/* strip out userenv data which is set on startup anyway */
for(cell i = 0; i < USER_ENV; i++)
{
if(!save_env_p(i)) userenv[i] = F;
}
gc(collect_full_op,
0, /* requested size */
false, /* discard objects only reachable from stacks */
true /* compact the code heap */);
/* Save the image */
if(save_image((vm_char *)(path.untagged() + 1)))
exit(0);
else
exit(1);
}
void factor_vm::data_fixup(cell *handle, cell data_relocation_base)
{
if(immediate_p(*handle))
@ -353,4 +273,84 @@ void factor_vm::load_image(vm_parameters *p)
userenv[IMAGE_ENV] = allot_alien(F,(cell)p->image_path);
}
/* Save the current image to disk */
bool factor_vm::save_image(const vm_char *filename)
{
FILE* file;
image_header h;
file = OPEN_WRITE(filename);
if(file == NULL)
{
print_string("Cannot open image file: "); print_native_string(filename); nl();
print_string(strerror(errno)); nl();
return false;
}
h.magic = image_magic;
h.version = image_version;
h.data_relocation_base = data->tenured->start;
h.data_size = data->tenured->here - data->tenured->start;
h.code_relocation_base = code->seg->start;
h.code_size = code->heap_size();
h.t = T;
h.bignum_zero = bignum_zero;
h.bignum_pos_one = bignum_pos_one;
h.bignum_neg_one = bignum_neg_one;
for(cell i = 0; i < USER_ENV; i++)
h.userenv[i] = (save_env_p(i) ? userenv[i] : F);
bool ok = true;
if(fwrite(&h,sizeof(image_header),1,file) != 1) ok = false;
if(fwrite((void*)data->tenured->start,h.data_size,1,file) != 1) ok = false;
if(fwrite(code->first_block(),h.code_size,1,file) != 1) ok = false;
if(fclose(file)) ok = false;
if(!ok)
{
print_string("save-image failed: "); print_string(strerror(errno)); nl();
}
return ok;
}
void factor_vm::primitive_save_image()
{
/* do a full GC to push everything into tenured space */
primitive_compact_gc();
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
save_image((vm_char *)(path.untagged() + 1));
}
void factor_vm::primitive_save_image_and_exit()
{
/* We unbox this before doing anything else. This is the only point
where we might throw an error, so we have to throw an error here since
later steps destroy the current image. */
gc_root<byte_array> path(dpop(),this);
path.untag_check(this);
/* strip out userenv data which is set on startup anyway */
for(cell i = 0; i < USER_ENV; i++)
{
if(!save_env_p(i)) userenv[i] = F;
}
gc(collect_full_op,
0, /* requested size */
false, /* discard objects only reachable from stacks */
true /* compact the code heap */);
/* Save the image */
if(save_image((vm_char *)(path.untagged() + 1)))
exit(0);
else
exit(1);
}
}

View File

@ -201,15 +201,6 @@ struct heap_block
{
cell header;
bool marked_p() { return header & 1; }
void set_marked_p(bool marked)
{
if(marked)
header |= 1;
else
header &= ~1;
}
cell type() { return (header >> 1) & 0x1f; }
void set_type(cell type)
{

103
vm/mark_bits.hpp Normal file
View File

@ -0,0 +1,103 @@
namespace factor
{
const int forwarding_granularity = 128;
template<typename Block, int Granularity> struct mark_bits {
cell start;
cell size;
cell bits_size;
unsigned int *marked;
unsigned int *freed;
cell forwarding_size;
cell *forwarding;
void clear_mark_bits()
{
memset(marked,0,bits_size * sizeof(unsigned int));
}
void clear_free_bits()
{
memset(freed,0,bits_size * sizeof(unsigned int));
}
void clear_forwarding()
{
memset(forwarding,0,forwarding_size * sizeof(cell));
}
explicit mark_bits(cell start_, cell size_) :
start(start_),
size(size_),
bits_size(size / Granularity / 32),
marked(new unsigned int[bits_size]),
freed(new unsigned int[bits_size]),
forwarding_size(size / Granularity / forwarding_granularity),
forwarding(new cell[forwarding_size])
{
clear_mark_bits();
clear_free_bits();
clear_forwarding();
}
~mark_bits()
{
delete[] marked;
marked = NULL;
delete[] freed;
freed = NULL;
delete[] forwarding;
forwarding = NULL;
}
std::pair<cell,cell> bitmap_deref(Block *address)
{
cell word_number = (((cell)address - start) / Granularity);
cell word_index = (word_number >> 5);
cell word_shift = (word_number & 31);
#ifdef FACTOR_DEBUG
assert(word_index < bits_size);
#endif
return std::make_pair(word_index,word_shift);
}
bool bitmap_elt(unsigned int *bits, Block *address)
{
std::pair<cell,cell> pair = bitmap_deref(address);
return (bits[pair.first] & (1 << pair.second)) != 0;
}
void set_bitmap_elt(unsigned int *bits, Block *address, bool flag)
{
std::pair<cell,cell> pair = bitmap_deref(address);
if(flag)
bits[pair.first] |= (1 << pair.second);
else
bits[pair.first] &= ~(1 << pair.second);
}
bool is_marked_p(Block *address)
{
return bitmap_elt(marked,address);
}
void set_marked_p(Block *address, bool marked_p)
{
set_bitmap_elt(marked,address,marked_p);
}
bool is_free_p(Block *address)
{
return bitmap_elt(freed,address);
}
void set_free_p(Block *address, bool free_p)
{
set_bitmap_elt(freed,address,free_p);
}
};
}

View File

@ -78,6 +78,7 @@ namespace factor
#include "words.hpp"
#include "float_bits.hpp"
#include "io.hpp"
#include "mark_bits.hpp"
#include "heap.hpp"
#include "image.hpp"
#include "alien.hpp"

View File

@ -253,8 +253,6 @@ struct factor_vm
void collect_nursery();
void collect_aging();
void collect_to_tenured();
void big_code_heap_update();
void small_code_heap_update();
void collect_full_impl(bool trace_contexts_p);
void collect_growing_heap(cell requested_bytes, bool trace_contexts_p, bool compact_code_heap_p);
void collect_full(bool trace_contexts_p, bool compact_code_heap_p);