VM: refactoring allot_code_block() to work like allot_large_object()

To make it possible to eventually grow the code heap
char-rename
Björn Lindqvist 2016-10-13 15:43:15 +02:00
parent 026b626203
commit 7d9bad465c
2 changed files with 15 additions and 14 deletions

View File

@ -6,20 +6,20 @@ namespace factor {
// Allocates memory // Allocates memory
inline code_block* factor_vm::allot_code_block(cell size, inline code_block* factor_vm::allot_code_block(cell size,
code_block_type type) { code_block_type type) {
cell block_size = size + sizeof(code_block); cell block_size = size + sizeof(code_block);
code_block* block = code->allocator->allot(block_size); cell required_free = block_size + code->high_water_mark();
if (!code->allocator->can_allot_p(required_free)) {
// If allocation failed, do a full GC and compact the code heap. // If allocation failed, do a full GC and compact the code heap.
// A full GC that occurs as a result of the data heap filling up does not // A full GC that occurs as a result of the data heap filling up does not
// trigger a compaction. This setup ensures that most GCs do not compact // trigger a compaction. This setup ensures that most GCs do not compact
// the code heap, but if the code fills up, it probably means it will be // the code heap, but if the code fills up, it probably means it will be
// fragmented after GC anyway, so its best to compact. // fragmented after GC anyway, so its best to compact.
if (block == NULL) {
primitive_compact_gc(); primitive_compact_gc();
block = code->allocator->allot(block_size);
// Insufficient room even after code GC, give up // Insufficient room even after code GC, give up
if (block == NULL) { if (!code->allocator->can_allot_p(required_free)) {
std::cout << "Code heap used: " << code->allocator->occupied_space() std::cout << "Code heap used: " << code->allocator->occupied_space()
<< "\n"; << "\n";
std::cout << "Code heap free: " << code->allocator->free_space << "\n"; std::cout << "Code heap free: " << code->allocator->free_space << "\n";
@ -27,6 +27,7 @@ inline code_block* factor_vm::allot_code_block(cell size,
fatal_error("Out of memory in allot_code_block", 0); fatal_error("Out of memory in allot_code_block", 0);
} }
} }
code_block* block = code->allocator->allot(block_size);
// next time we do a minor GC, we have to trace this code block, since // next time we do a minor GC, we have to trace this code block, since
// the fields of the code_block struct might point into nursery or aging // the fields of the code_block struct might point into nursery or aging
@ -39,16 +40,15 @@ inline code_block* factor_vm::allot_code_block(cell size,
// Allocates memory // Allocates memory
inline object* factor_vm::allot_large_object(cell type, cell size) { inline object* factor_vm::allot_large_object(cell type, cell size) {
// If tenured space does not have enough room, collect and compact // If tenured space does not have enough room, collect and compact
cell requested_size = size + data->high_water_mark(); cell required_free = size + data->high_water_mark();
if (!data->tenured->can_allot_p(requested_size)) { if (!data->tenured->can_allot_p(required_free)) {
primitive_compact_gc(); primitive_compact_gc();
// If it still won't fit, grow the heap // If it still won't fit, grow the heap
if (!data->tenured->can_allot_p(requested_size)) { if (!data->tenured->can_allot_p(required_free)) {
gc(collect_growing_data_heap_op, size); gc(collect_growing_data_heap_op, size);
} }
} }
object* obj = data->tenured->allot(size); object* obj = data->tenured->allot(size);
// Allows initialization code to store old->new pointers // Allows initialization code to store old->new pointers

View File

@ -49,6 +49,7 @@ struct code_heap {
void set_safepoint_guard(bool locked); void set_safepoint_guard(bool locked);
void verify_all_blocks_set(); void verify_all_blocks_set();
void initialize_all_blocks_set(); void initialize_all_blocks_set();
cell high_water_mark() { return allocator->size / 20; }
void sweep(); void sweep();