VM: Refactor code_heap to Factor style

db4
Erik Charlebois 2013-05-11 21:51:54 -04:00
parent d2fe86eb7e
commit 7f56458820
2 changed files with 224 additions and 268 deletions

View File

@ -1,325 +1,283 @@
#include "master.hpp"
namespace factor
{
namespace factor {
code_heap::code_heap(cell size)
{
if(size > ((u64)1 << (sizeof(cell) * 8 - 6))) fatal_error("Heap too large",size);
seg = new segment(align_page(size),true);
if(!seg) fatal_error("Out of memory in code_heap constructor",size);
code_heap::code_heap(cell size) {
if (size > ((u64) 1 << (sizeof(cell) * 8 - 6)))
fatal_error("Heap too large", size);
seg = new segment(align_page(size), true);
if (!seg)
fatal_error("Out of memory in code_heap constructor", size);
cell start = seg->start + getpagesize() + seh_area_size;
cell start = seg->start + getpagesize() + seh_area_size;
allocator = new free_list_allocator<code_block>(seg->end - start,start);
allocator = new free_list_allocator<code_block>(seg->end - start, start);
/* See os-windows-x86.64.cpp for seh_area usage */
safepoint_page = (void *)seg->start;
seh_area = (char *)seg->start + getpagesize();
/* See os-windows-x86.64.cpp for seh_area usage */
safepoint_page = (void*)seg->start;
seh_area = (char*)seg->start + getpagesize();
}
code_heap::~code_heap()
{
delete allocator;
allocator = NULL;
delete seg;
seg = NULL;
code_heap::~code_heap() {
delete allocator;
allocator = NULL;
delete seg;
seg = NULL;
}
void code_heap::write_barrier(code_block *compiled)
{
points_to_nursery.insert(compiled);
points_to_aging.insert(compiled);
void code_heap::write_barrier(code_block* compiled) {
points_to_nursery.insert(compiled);
points_to_aging.insert(compiled);
}
void code_heap::clear_remembered_set()
{
points_to_nursery.clear();
points_to_aging.clear();
void code_heap::clear_remembered_set() {
points_to_nursery.clear();
points_to_aging.clear();
}
bool code_heap::uninitialized_p(code_block *compiled)
{
return uninitialized_blocks.count(compiled) > 0;
bool code_heap::uninitialized_p(code_block* compiled) {
return uninitialized_blocks.count(compiled) > 0;
}
bool code_heap::marked_p(code_block *compiled)
{
return allocator->state.marked_p(compiled);
bool code_heap::marked_p(code_block* compiled) {
return allocator->state.marked_p(compiled);
}
void code_heap::set_marked_p(code_block *compiled)
{
allocator->state.set_marked_p(compiled);
void code_heap::set_marked_p(code_block* compiled) {
allocator->state.set_marked_p(compiled);
}
void code_heap::clear_mark_bits()
{
allocator->state.clear_mark_bits();
void code_heap::clear_mark_bits() { allocator->state.clear_mark_bits(); }
void code_heap::free(code_block* compiled) {
FACTOR_ASSERT(!uninitialized_p(compiled));
points_to_nursery.erase(compiled);
points_to_aging.erase(compiled);
all_blocks.erase((cell) compiled);
allocator->free(compiled);
}
void code_heap::free(code_block *compiled)
{
FACTOR_ASSERT(!uninitialized_p(compiled));
points_to_nursery.erase(compiled);
points_to_aging.erase(compiled);
all_blocks.erase((cell)compiled);
allocator->free(compiled);
}
void code_heap::flush_icache() { factor::flush_icache(seg->start, seg->size); }
void code_heap::flush_icache()
{
factor::flush_icache(seg->start,seg->size);
}
struct clear_free_blocks_from_all_blocks_iterator {
code_heap* code;
struct clear_free_blocks_from_all_blocks_iterator
{
code_heap *code;
clear_free_blocks_from_all_blocks_iterator(code_heap* code) : code(code) {}
clear_free_blocks_from_all_blocks_iterator(code_heap *code) : code(code) {}
void operator()(code_block* free_block, cell size) {
std::set<cell>::iterator erase_from =
code->all_blocks.lower_bound((cell) free_block);
std::set<cell>::iterator erase_to =
code->all_blocks.lower_bound((cell) free_block + size);
void operator()(code_block *free_block, cell size) {
std::set<cell>::iterator erase_from =
code->all_blocks.lower_bound((cell)free_block);
std::set<cell>::iterator erase_to =
code->all_blocks.lower_bound((cell)free_block + size);
code->all_blocks.erase(erase_from, erase_to);
}
code->all_blocks.erase(erase_from, erase_to);
}
};
void code_heap::sweep()
{
clear_free_blocks_from_all_blocks_iterator clearer(this);
allocator->sweep(clearer);
void code_heap::sweep() {
clear_free_blocks_from_all_blocks_iterator clearer(this);
allocator->sweep(clearer);
#ifdef FACTOR_DEBUG
verify_all_blocks_set();
verify_all_blocks_set();
#endif
}
struct all_blocks_set_verifier {
std::set<cell> *all_blocks;
std::set<cell>* all_blocks;
all_blocks_set_verifier(std::set<cell> *all_blocks) : all_blocks(all_blocks) {}
all_blocks_set_verifier(std::set<cell>* all_blocks)
: all_blocks(all_blocks) {}
void operator()(code_block *block, cell size)
{
FACTOR_ASSERT(all_blocks->find((cell)block) != all_blocks->end());
}
void operator()(code_block* block, cell size) {
FACTOR_ASSERT(all_blocks->find((cell) block) != all_blocks->end());
}
};
void code_heap::verify_all_blocks_set()
{
all_blocks_set_verifier verifier(&all_blocks);
allocator->iterate(verifier);
void code_heap::verify_all_blocks_set() {
all_blocks_set_verifier verifier(&all_blocks);
allocator->iterate(verifier);
}
code_block *code_heap::code_block_for_address(cell address)
{
std::set<cell>::const_iterator blocki =
all_blocks.upper_bound(address);
FACTOR_ASSERT(blocki != all_blocks.begin());
--blocki;
code_block* found_block = (code_block*)*blocki;
FACTOR_ASSERT((cell)found_block->entry_point() <= address
/* XXX this isn't valid during fixup. should store the size in the map
&& address - (cell)found_block->entry_point() < found_block->size()*/);
return found_block;
code_block* code_heap::code_block_for_address(cell address) {
std::set<cell>::const_iterator blocki = all_blocks.upper_bound(address);
FACTOR_ASSERT(blocki != all_blocks.begin());
--blocki;
code_block* found_block = (code_block*)*blocki;
FACTOR_ASSERT((cell) found_block->entry_point() <=
address /* XXX this isn't valid during fixup. should store the
size in the map
&& address - (cell)found_block->entry_point() <
found_block->size()*/);
return found_block;
}
struct all_blocks_set_inserter {
code_heap *code;
code_heap* code;
all_blocks_set_inserter(code_heap *code) : code(code) {}
all_blocks_set_inserter(code_heap* code) : code(code) {}
void operator()(code_block *block, cell size)
{
code->all_blocks.insert((cell)block);
}
void operator()(code_block* block, cell size) {
code->all_blocks.insert((cell) block);
}
};
void code_heap::initialize_all_blocks_set()
{
all_blocks.clear();
all_blocks_set_inserter inserter(this);
allocator->iterate(inserter);
void code_heap::initialize_all_blocks_set() {
all_blocks.clear();
all_blocks_set_inserter inserter(this);
allocator->iterate(inserter);
#if defined(FACTOR_DEBUG)
verify_all_blocks_set();
verify_all_blocks_set();
#endif
}
/* Allocate a code heap during startup */
void factor_vm::init_code_heap(cell size)
{
code = new code_heap(size);
}
void factor_vm::init_code_heap(cell size) { code = new code_heap(size); }
struct word_updater {
factor_vm *parent;
bool reset_inline_caches;
factor_vm* parent;
bool reset_inline_caches;
word_updater(factor_vm *parent_, bool reset_inline_caches_) :
parent(parent_), reset_inline_caches(reset_inline_caches_) {}
word_updater(factor_vm* parent_, bool reset_inline_caches_)
: parent(parent_), reset_inline_caches(reset_inline_caches_) {}
void operator()(code_block *compiled, cell size)
{
parent->update_word_references(compiled,reset_inline_caches);
}
void operator()(code_block* compiled, cell size) {
parent->update_word_references(compiled, reset_inline_caches);
}
};
/* Update pointers to words referenced from all code blocks.
Only needed after redefining an existing word.
If generic words were redefined, inline caches need to be reset. */
void factor_vm::update_code_heap_words(bool reset_inline_caches)
{
word_updater updater(this,reset_inline_caches);
each_code_block(updater);
void factor_vm::update_code_heap_words(bool reset_inline_caches) {
word_updater updater(this, reset_inline_caches);
each_code_block(updater);
}
/* Fix up new words only.
Fast path for compilation units that only define new words. */
void factor_vm::initialize_code_blocks()
{
std::map<code_block *, cell>::const_iterator iter = code->uninitialized_blocks.begin();
std::map<code_block *, cell>::const_iterator end = code->uninitialized_blocks.end();
void factor_vm::initialize_code_blocks() {
std::map<code_block*, cell>::const_iterator iter =
code->uninitialized_blocks.begin();
std::map<code_block*, cell>::const_iterator end =
code->uninitialized_blocks.end();
for(; iter != end; iter++)
initialize_code_block(iter->first,iter->second);
for (; iter != end; iter++)
initialize_code_block(iter->first, iter->second);
code->uninitialized_blocks.clear();
code->uninitialized_blocks.clear();
}
/* Allocates memory */
void factor_vm::primitive_modify_code_heap()
{
bool reset_inline_caches = to_boolean(ctx->pop());
bool update_existing_words = to_boolean(ctx->pop());
data_root<array> alist(ctx->pop(),this);
void factor_vm::primitive_modify_code_heap() {
bool reset_inline_caches = to_boolean(ctx->pop());
bool update_existing_words = to_boolean(ctx->pop());
data_root<array> alist(ctx->pop(), this);
cell count = array_capacity(alist.untagged());
cell count = array_capacity(alist.untagged());
if(count == 0)
return;
if (count == 0)
return;
for(cell i = 0; i < count; i++)
{
data_root<array> pair(array_nth(alist.untagged(),i),this);
for (cell i = 0; i < count; i++) {
data_root<array> pair(array_nth(alist.untagged(), i), this);
data_root<word> word(array_nth(pair.untagged(),0),this);
data_root<object> data(array_nth(pair.untagged(),1),this);
data_root<word> word(array_nth(pair.untagged(), 0), this);
data_root<object> data(array_nth(pair.untagged(), 1), this);
switch(data.type())
{
case QUOTATION_TYPE:
jit_compile_word(word.value(),data.value(),false);
break;
case ARRAY_TYPE:
{
array *compiled_data = data.as<array>().untagged();
cell parameters = array_nth(compiled_data,0);
cell literals = array_nth(compiled_data,1);
cell relocation = array_nth(compiled_data,2);
cell labels = array_nth(compiled_data,3);
cell code = array_nth(compiled_data,4);
cell frame_size = untag_fixnum(array_nth(compiled_data,5));
switch (data.type()) {
case QUOTATION_TYPE:
jit_compile_word(word.value(), data.value(), false);
break;
case ARRAY_TYPE: {
array* compiled_data = data.as<array>().untagged();
cell parameters = array_nth(compiled_data, 0);
cell literals = array_nth(compiled_data, 1);
cell relocation = array_nth(compiled_data, 2);
cell labels = array_nth(compiled_data, 3);
cell code = array_nth(compiled_data, 4);
cell frame_size = untag_fixnum(array_nth(compiled_data, 5));
code_block *compiled = add_code_block(
code_block_optimized,
code,
labels,
word.value(),
relocation,
parameters,
literals,
frame_size);
code_block* compiled =
add_code_block(code_block_optimized, code, labels, word.value(),
relocation, parameters, literals, frame_size);
word->entry_point = compiled->entry_point();
}
break;
default:
critical_error("Expected a quotation or an array",data.value());
break;
}
}
word->entry_point = compiled->entry_point();
} break;
default:
critical_error("Expected a quotation or an array", data.value());
break;
}
}
if(update_existing_words)
update_code_heap_words(reset_inline_caches);
else
initialize_code_blocks();
if (update_existing_words)
update_code_heap_words(reset_inline_caches);
else
initialize_code_blocks();
}
code_heap_room factor_vm::code_room()
{
code_heap_room room;
code_heap_room factor_vm::code_room() {
code_heap_room room;
room.size = code->allocator->size;
room.occupied_space = code->allocator->occupied_space();
room.total_free = code->allocator->free_space();
room.contiguous_free = code->allocator->largest_free_block();
room.free_block_count = code->allocator->free_block_count();
room.size = code->allocator->size;
room.occupied_space = code->allocator->occupied_space();
room.total_free = code->allocator->free_space();
room.contiguous_free = code->allocator->largest_free_block();
room.free_block_count = code->allocator->free_block_count();
return room;
return room;
}
/* Allocates memory */
void factor_vm::primitive_code_room()
{
code_heap_room room = code_room();
ctx->push(tag<byte_array>(byte_array_from_value(&room)));
void factor_vm::primitive_code_room() {
code_heap_room room = code_room();
ctx->push(tag<byte_array>(byte_array_from_value(&room)));
}
struct stack_trace_stripper {
explicit stack_trace_stripper() {}
explicit stack_trace_stripper() {}
void operator()(code_block *compiled, cell size)
{
compiled->owner = false_object;
}
void operator()(code_block* compiled, cell size) {
compiled->owner = false_object;
}
};
void factor_vm::primitive_strip_stack_traces()
{
stack_trace_stripper stripper;
each_code_block(stripper);
void factor_vm::primitive_strip_stack_traces() {
stack_trace_stripper stripper;
each_code_block(stripper);
}
struct code_block_accumulator {
std::vector<cell> objects;
std::vector<cell> objects;
void operator()(code_block *compiled, cell size)
{
objects.push_back(compiled->owner);
objects.push_back(compiled->parameters);
objects.push_back(compiled->relocation);
void operator()(code_block* compiled, cell size) {
objects.push_back(compiled->owner);
objects.push_back(compiled->parameters);
objects.push_back(compiled->relocation);
objects.push_back(tag_fixnum(compiled->type()));
objects.push_back(tag_fixnum(compiled->size()));
objects.push_back(tag_fixnum(compiled->type()));
objects.push_back(tag_fixnum(compiled->size()));
/* Note: the entry point is always a multiple of the heap
alignment (16 bytes). We cannot allocate while iterating
through the code heap, so it is not possible to call
from_unsigned_cell() here. It is OK, however, to add it as
if it were a fixnum, and have library code shift it to the
left by 4. */
cell entry_point = (cell)compiled->entry_point();
FACTOR_ASSERT((entry_point & (data_alignment - 1)) == 0);
FACTOR_ASSERT((entry_point & TAG_MASK) == FIXNUM_TYPE);
objects.push_back(entry_point);
}
/* Note: the entry point is always a multiple of the heap
alignment (16 bytes). We cannot allocate while iterating
through the code heap, so it is not possible to call
from_unsigned_cell() here. It is OK, however, to add it as
if it were a fixnum, and have library code shift it to the
left by 4. */
cell entry_point = (cell) compiled->entry_point();
FACTOR_ASSERT((entry_point & (data_alignment - 1)) == 0);
FACTOR_ASSERT((entry_point & TAG_MASK) == FIXNUM_TYPE);
objects.push_back(entry_point);
}
};
/* Allocates memory */
cell factor_vm::code_blocks()
{
code_block_accumulator accum;
each_code_block(accum);
return std_vector_to_array(accum.objects);
cell factor_vm::code_blocks() {
code_block_accumulator accum;
each_code_block(accum);
return std_vector_to_array(accum.objects);
}
/* Allocates memory */
void factor_vm::primitive_code_blocks()
{
ctx->push(code_blocks());
}
void factor_vm::primitive_code_blocks() { ctx->push(code_blocks()); }
}

View File

@ -1,70 +1,68 @@
namespace factor
{
namespace factor {
#if defined(WINDOWS) && defined(FACTOR_64)
const cell seh_area_size = 1024;
const cell seh_area_size = 1024;
#else
const cell seh_area_size = 0;
const cell seh_area_size = 0;
#endif
struct code_heap {
/* The actual memory area */
segment *seg;
/* The actual memory area */
segment* seg;
/* Memory area reserved for safepoint guard page */
void *safepoint_page;
/* Memory area reserved for safepoint guard page */
void* safepoint_page;
/* Memory area reserved for SEH. Only used on Windows */
char *seh_area;
/* Memory area reserved for SEH. Only used on Windows */
char* seh_area;
/* Memory allocator */
free_list_allocator<code_block> *allocator;
/* Memory allocator */
free_list_allocator<code_block>* allocator;
std::set<cell> all_blocks;
std::set<cell> all_blocks;
/* Keys are blocks which need to be initialized by initialize_code_block().
Values are literal tables. Literal table arrays are GC roots until the
time the block is initialized, after which point they are discarded. */
std::map<code_block *, cell> uninitialized_blocks;
/* Keys are blocks which need to be initialized by initialize_code_block().
Values are literal tables. Literal table arrays are GC roots until the
time the block is initialized, after which point they are discarded. */
std::map<code_block*, cell> uninitialized_blocks;
/* Code blocks which may reference objects in the nursery */
std::set<code_block *> points_to_nursery;
/* Code blocks which may reference objects in the nursery */
std::set<code_block*> points_to_nursery;
/* Code blocks which may reference objects in aging space or the nursery */
std::set<code_block *> points_to_aging;
/* Code blocks which may reference objects in aging space or the nursery */
std::set<code_block*> points_to_aging;
explicit code_heap(cell size);
~code_heap();
void write_barrier(code_block *compiled);
void clear_remembered_set();
bool uninitialized_p(code_block *compiled);
bool marked_p(code_block *compiled);
void set_marked_p(code_block *compiled);
void clear_mark_bits();
void free(code_block *compiled);
void flush_icache();
void guard_safepoint();
void unguard_safepoint();
void verify_all_blocks_set();
void initialize_all_blocks_set();
explicit code_heap(cell size);
~code_heap();
void write_barrier(code_block* compiled);
void clear_remembered_set();
bool uninitialized_p(code_block* compiled);
bool marked_p(code_block* compiled);
void set_marked_p(code_block* compiled);
void clear_mark_bits();
void free(code_block* compiled);
void flush_icache();
void guard_safepoint();
void unguard_safepoint();
void verify_all_blocks_set();
void initialize_all_blocks_set();
void sweep();
void sweep();
code_block *code_block_for_address(cell address);
code_block* code_block_for_address(cell address);
bool safepoint_p(cell addr)
{
cell page_mask = ~(getpagesize() - 1);
return (addr & page_mask) == (cell)safepoint_page;
}
bool safepoint_p(cell addr) {
cell page_mask = ~(getpagesize() - 1);
return (addr & page_mask) == (cell) safepoint_page;
}
};
struct code_heap_room {
cell size;
cell occupied_space;
cell total_free;
cell contiguous_free;
cell free_block_count;
cell size;
cell occupied_space;
cell total_free;
cell contiguous_free;
cell free_block_count;
};
}