Remove some words in math.algebra and change implementation
parent
9760eb4fb1
commit
a9903e1bdc
|
@ -1,14 +1,6 @@
|
|||
USING: help.markup help.syntax ;
|
||||
IN: math.algebra
|
||||
|
||||
HELP: ext-euclidian
|
||||
{ $values { "a" "a positive integer" } { "b" "a positive integer" } { "gcd" "a positive integer" } { "u" "an integer" } { "v" "an integer" } }
|
||||
{ $description "Compute the greatest common divisor " { $snippet "gcd" } " of integers " { $snippet "a" } " and " { $snippet "b" } " using the extended Euclidian algorithm. In addition, this word also computes two other values " { $snippet "u" } " and " { $snippet "v" } " such that " { $snippet "a*u + b*v = gcd" } "." } ;
|
||||
|
||||
HELP: ring-inverse
|
||||
{ $values { "a" "a positive integer" } { "b" "a positive integer" } { "i" "a positive integer" } }
|
||||
{ $description "If " { $snippet "a" } " and " { $snippet "b" } " are coprime, " { $snippet "i" } " is the smallest positive integer such as " { $snippet "a*i = 1" } " in ring " { $snippet "Z/bZ" } "." } ;
|
||||
|
||||
HELP: chinese-remainder
|
||||
{ $values { "aseq" "a sequence of integers" } { "nseq" "a sequence of positive integers" } { "x" "an integer" } }
|
||||
{ $description "If " { $snippet "nseq" } " integers are pairwise coprimes, " { $snippet "x" } " is the smallest positive integer congruent to each element in " { $snippet "aseq" } " modulo the corresponding element in " { $snippet "nseq" } "." } ;
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
USING: math.algebra tools.test ;
|
||||
|
||||
{ 2 5 -2 } [ 10 24 ext-euclidian ] unit-test
|
||||
{ 17 } [ 19 23 ring-inverse ] unit-test
|
||||
{ 11 } [ { 2 3 1 } { 3 4 5 } chinese-remainder ] unit-test
|
||||
|
|
|
@ -1,37 +1,8 @@
|
|||
! Copyright (c) 2007 Samuel Tardieu
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: kernel math math.ranges namespaces sequences vars ;
|
||||
USING: kernel math math.functions sequences ;
|
||||
IN: math.algebra
|
||||
|
||||
<PRIVATE
|
||||
|
||||
! The traditional name for the first variable is "r", but we want to avoid
|
||||
! a redefinition of "r>" and ">r", so we chose to use "s" instead.
|
||||
|
||||
VARS: s-1 u-1 v-1 s u v ;
|
||||
|
||||
: init ( a b -- )
|
||||
>s >s-1 0 >u 1 >u-1 1 >v 0 >v-1 ;
|
||||
|
||||
: advance ( r u v -- )
|
||||
v> >v-1 >v u> >u-1 >u s> >s-1 >s ; inline
|
||||
|
||||
: step ( -- )
|
||||
s-1> s> 2dup /mod drop [ * - ] keep u-1> over u> * - v-1> rot v> * -
|
||||
advance ;
|
||||
|
||||
PRIVATE>
|
||||
|
||||
! Extended Euclidian: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
: ext-euclidian ( a b -- gcd u v )
|
||||
[ init [ s> 0 > ] [ step ] [ ] while s-1> u-1> v-1> ] with-scope ; foldable
|
||||
|
||||
! Inverse a in ring Z/bZ
|
||||
: ring-inverse ( a b -- i )
|
||||
[ ext-euclidian drop nip ] keep rem ; foldable
|
||||
|
||||
! Chinese remainder: http://en.wikipedia.org/wiki/Chinese_remainder_theorem
|
||||
: chinese-remainder ( aseq nseq -- x )
|
||||
dup product
|
||||
[ [ over / [ ext-euclidian ] keep * 2nip * ] curry 2map sum ] keep rem ;
|
||||
foldable
|
||||
[ [ over / [ swap gcd drop ] keep * * ] curry 2map sum ] keep rem ; foldable
|
||||
|
|
Loading…
Reference in New Issue