Dev checkpoint

db4
Phil Dawes 2009-09-03 19:41:19 +01:00
parent 9bf6f97e35
commit b07550620f
3 changed files with 96 additions and 82 deletions

View File

@ -17,7 +17,6 @@ C-STRUCT: vm
{ "zone" "nursery" }
{ "cell" "cards_offset" }
{ "cell" "decks_offset" }
{ "cell" "__padding__" }
{ "cell[70]" "userenv" }
;

View File

@ -185,7 +185,7 @@ void factorvm::fp_signal_handler_impl()
void fp_signal_handler_impl()
{
SIGNAL_VM_PTR->fp_signal_handler_impl();
SIGNAL_VM_PTR()->fp_signal_handler_impl();
}
}

175
vm/vm.hpp
View File

@ -1,27 +1,112 @@
namespace factor
{
struct factorvm {
struct factorvmdata {
// if you change this struct, also change vm.factor k--------
context *stack_chain;
zone nursery; /* new objects are allocated here */
cell cards_offset;
cell decks_offset;
#ifndef FACTOR_64
cell __padding__ ; // align to 8 byte boundary
#endif
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
#ifndef FACTOR_64
cell __padding2__; // not sure why we need this, bootstrap doesn't work without it
#endif
// -------------------------------
// contexts
cell ds_size, rs_size;
context *unused_contexts;
// run
cell T; /* Canonical T object. It's just a word */
// profiler
bool profiling_p;
// errors
/* Global variables used to pass fault handler state from signal handler to
user-space */
cell signal_number;
cell signal_fault_addr;
unsigned int signal_fpu_status;
stack_frame *signal_callstack_top;
//data_heap
bool secure_gc; /* Set by the -securegc command line argument */
bool gc_off; /* GC is off during heap walking */
data_heap *data;
/* A heap walk allows useful things to be done, like finding all
references to an object for debugging purposes. */
cell heap_scan_ptr;
//write barrier
cell allot_markers_offset;
//data_gc
/* used during garbage collection only */
zone *newspace;
bool performing_gc;
bool performing_compaction;
cell collecting_gen;
/* if true, we are collecting aging space for the second time, so if it is still
full, we go on to collect tenured */
bool collecting_aging_again;
/* in case a generation fills up in the middle of a gc, we jump back
up to try collecting the next generation. */
jmp_buf gc_jmp;
gc_stats stats[max_gen_count];
u64 cards_scanned;
u64 decks_scanned;
u64 card_scan_time;
cell code_heap_scans;
/* What generation was being collected when copy_code_heap_roots() was last
called? Until the next call to add_code_block(), future
collections of younger generations don't have to touch the code
heap. */
cell last_code_heap_scan;
/* sometimes we grow the heap */
bool growing_data_heap;
data_heap *old_data_heap;
// local roots
/* If a runtime function needs to call another function which potentially
allocates memory, it must wrap any local variable references to Factor
objects in gc_root instances */
std::vector<cell> gc_locals;
std::vector<cell> gc_bignums;
//debug
bool fep_disabled;
bool full_output;
cell look_for;
cell obj;
//math
cell bignum_zero;
cell bignum_pos_one;
cell bignum_neg_one;
//code_heap
heap code;
unordered_map<heap_block *,char *> forwarding;
//image
cell code_relocation_base;
cell data_relocation_base;
//dispatch
cell megamorphic_cache_hits;
cell megamorphic_cache_misses;
//inline cache
cell max_pic_size;
cell cold_call_to_ic_transitions;
cell ic_to_pic_transitions;
cell pic_to_mega_transitions;
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
};
struct factorvm : factorvmdata {
// segments
inline cell align_page(cell a);
// contexts
cell ds_size, rs_size;
context *unused_contexts;
void reset_datastack();
void reset_retainstack();
void fix_stacks();
@ -40,7 +125,6 @@ struct factorvm {
inline void vmprim_check_datastack();
// run
cell T; /* Canonical T object. It's just a word */
inline void vmprim_getenv();
inline void vmprim_setenv();
inline void vmprim_exit();
@ -52,19 +136,12 @@ struct factorvm {
inline void vmprim_clone();
// profiler
bool profiling_p;
void init_profiler();
code_block *compile_profiling_stub(cell word_);
void set_profiling(bool profiling);
inline void vmprim_profiling();
// errors
/* Global variables used to pass fault handler state from signal handler to
user-space */
cell signal_number;
cell signal_fault_addr;
unsigned int signal_fpu_status;
stack_frame *signal_callstack_top;
void out_of_memory();
void critical_error(const char* msg, cell tagged);
void throw_error(cell error, stack_frame *callstack_top);
@ -148,12 +225,6 @@ struct factorvm {
bignum *digit_stream_to_bignum(unsigned int n_digits, unsigned int (*producer)(unsigned int, factorvm *), unsigned int radix, int negative_p);
//data_heap
bool secure_gc; /* Set by the -securegc command line argument */
bool gc_off; /* GC is off during heap walking */
data_heap *data;
/* A heap walk allows useful things to be done, like finding all
references to an object for debugging purposes. */
cell heap_scan_ptr;
cell init_zone(zone *z, cell size, cell start);
void init_card_decks();
data_heap *alloc_data_heap(cell gens, cell young_size,cell aging_size,cell tenured_size);
@ -183,7 +254,6 @@ struct factorvm {
//write barrier
cell allot_markers_offset;
inline card *addr_to_card(cell a);
inline cell card_to_addr(card *c);
inline cell card_offset(card *c);
@ -196,36 +266,6 @@ struct factorvm {
//data_gc
/* used during garbage collection only */
zone *newspace;
bool performing_gc;
bool performing_compaction;
cell collecting_gen;
/* if true, we are collecting aging space for the second time, so if it is still
full, we go on to collect tenured */
bool collecting_aging_again;
/* in case a generation fills up in the middle of a gc, we jump back
up to try collecting the next generation. */
jmp_buf gc_jmp;
gc_stats stats[max_gen_count];
u64 cards_scanned;
u64 decks_scanned;
u64 card_scan_time;
cell code_heap_scans;
/* What generation was being collected when copy_code_heap_roots() was last
called? Until the next call to add_code_block(), future
collections of younger generations don't have to touch the code
heap. */
cell last_code_heap_scan;
/* sometimes we grow the heap */
bool growing_data_heap;
data_heap *old_data_heap;
void init_data_gc();
object *copy_untagged_object_impl(object *pointer, cell size);
object *copy_object_impl(object *untagged);
@ -263,23 +303,12 @@ struct factorvm {
inline void check_tagged_pointer(cell tagged);
inline void vmprim_clear_gc_stats();
// local roots
/* If a runtime function needs to call another function which potentially
allocates memory, it must wrap any local variable references to Factor
objects in gc_root instances */
std::vector<cell> gc_locals;
std::vector<cell> gc_bignums;
// generic arrays
template <typename T> T *allot_array_internal(cell capacity);
template <typename T> bool reallot_array_in_place_p(T *array, cell capacity);
template <typename TYPE> TYPE *reallot_array(TYPE *array_, cell capacity);
//debug
bool fep_disabled;
bool full_output;
cell look_for;
cell obj;
void print_chars(string* str);
void print_word(word* word, cell nesting);
void print_factor_string(string* str);
@ -353,9 +382,6 @@ struct factorvm {
inline void vmprim_wrapper();
//math
cell bignum_zero;
cell bignum_pos_one;
cell bignum_neg_one;
inline void vmprim_bignum_to_fixnum();
inline void vmprim_float_to_fixnum();
inline void vmprim_fixnum_divint();
@ -511,8 +537,6 @@ struct factorvm {
}
//code_heap
heap code;
unordered_map<heap_block *,char *> forwarding;
void init_code_heap(cell size);
bool in_code_heap_p(cell ptr);
void jit_compile_word(cell word_, cell def_, bool relocate);
@ -530,8 +554,6 @@ struct factorvm {
//image
cell code_relocation_base;
cell data_relocation_base;
void init_objects(image_header *h);
void load_data_heap(FILE *file, image_header *h, vm_parameters *p);
void load_code_heap(FILE *file, image_header *h, vm_parameters *p);
@ -606,8 +628,6 @@ struct factorvm {
inline void vmprim_quot_compiled_p();
//dispatch
cell megamorphic_cache_hits;
cell megamorphic_cache_misses;
cell search_lookup_alist(cell table, cell klass);
cell search_lookup_hash(cell table, cell klass, cell hashcode);
cell nth_superclass(tuple_layout *layout, fixnum echelon);
@ -625,11 +645,6 @@ struct factorvm {
inline void vmprim_dispatch_stats();
//inline cache
cell max_pic_size;
cell cold_call_to_ic_transitions;
cell ic_to_pic_transitions;
cell pic_to_mega_transitions;
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
void init_inline_caching(int max_size);
void deallocate_inline_cache(cell return_address);
cell determine_inline_cache_type(array *cache_entries);