VM: merge of free_list_allocator.hpp into free_list.hpp
It's better if all the free list stuff is in a single header.locals-and-roots
parent
a23bb8cf16
commit
bcc32291e8
|
@ -92,7 +92,6 @@ ifdef CONFIG
|
|||
vm/mark_bits.hpp \
|
||||
vm/free_list.hpp \
|
||||
vm/fixup.hpp \
|
||||
vm/free_list_allocator.hpp \
|
||||
vm/write_barrier.hpp \
|
||||
vm/object_start_map.hpp \
|
||||
vm/aging_space.hpp \
|
||||
|
|
180
vm/free_list.hpp
180
vm/free_list.hpp
|
@ -43,4 +43,184 @@ struct free_list {
|
|||
cell largest_free_block();
|
||||
};
|
||||
|
||||
struct allocator_room {
|
||||
cell size;
|
||||
cell occupied_space;
|
||||
cell total_free;
|
||||
cell contiguous_free;
|
||||
cell free_block_count;
|
||||
};
|
||||
|
||||
template <typename Block> struct free_list_allocator {
|
||||
cell size;
|
||||
cell start;
|
||||
cell end;
|
||||
free_list free_blocks;
|
||||
mark_bits state;
|
||||
|
||||
free_list_allocator(cell size, cell start);
|
||||
void initial_free_list(cell occupied);
|
||||
bool contains_p(Block* block);
|
||||
bool can_allot_p(cell size);
|
||||
Block* allot(cell size);
|
||||
void free(Block* block);
|
||||
cell occupied_space();
|
||||
cell free_space();
|
||||
cell largest_free_block();
|
||||
cell free_block_count();
|
||||
void sweep();
|
||||
template <typename Iterator> void sweep(Iterator& iter);
|
||||
template <typename Iterator, typename Fixup>
|
||||
void compact(Iterator& iter, Fixup fixup, const Block** finger);
|
||||
template <typename Iterator, typename Fixup>
|
||||
void iterate(Iterator& iter, Fixup fixup);
|
||||
template <typename Iterator> void iterate(Iterator& iter);
|
||||
allocator_room as_allocator_room();
|
||||
};
|
||||
|
||||
template <typename Block>
|
||||
free_list_allocator<Block>::free_list_allocator(cell size, cell start)
|
||||
: size(size),
|
||||
start(start),
|
||||
end(start + size),
|
||||
state(mark_bits(size, start)) {
|
||||
initial_free_list(0);
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
void free_list_allocator<Block>::initial_free_list(cell occupied) {
|
||||
free_blocks.initial_free_list(start, end, occupied);
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
bool free_list_allocator<Block>::contains_p(Block* block) {
|
||||
return ((cell)block - start) < size;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
bool free_list_allocator<Block>::can_allot_p(cell size) {
|
||||
return free_blocks.can_allot_p(size);
|
||||
}
|
||||
|
||||
template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
|
||||
size = align(size, data_alignment);
|
||||
|
||||
free_heap_block* block = free_blocks.find_free_block(size);
|
||||
if (block) {
|
||||
block = free_blocks.split_free_block(block, size);
|
||||
return (Block*)block;
|
||||
} else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
template <typename Block> void free_list_allocator<Block>::free(Block* block) {
|
||||
free_heap_block* free_block = (free_heap_block*)block;
|
||||
free_block->make_free(block->size());
|
||||
free_blocks.add_to_free_list(free_block);
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::free_space() {
|
||||
return free_blocks.free_space;
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::occupied_space() {
|
||||
return size - free_blocks.free_space;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
cell free_list_allocator<Block>::largest_free_block() {
|
||||
return free_blocks.largest_free_block();
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::free_block_count() {
|
||||
return free_blocks.free_block_count;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
template <typename Iterator>
|
||||
void free_list_allocator<Block>::sweep(Iterator& iter) {
|
||||
free_blocks.clear_free_list();
|
||||
|
||||
cell start = this->start;
|
||||
cell end = this->end;
|
||||
|
||||
while (start != end) {
|
||||
/* find next unmarked block */
|
||||
start = state.next_unmarked_block_after(start);
|
||||
|
||||
if (start != end) {
|
||||
/* find size */
|
||||
cell size = state.unmarked_block_size(start);
|
||||
FACTOR_ASSERT(size > 0);
|
||||
|
||||
free_heap_block* free_block = (free_heap_block*)start;
|
||||
free_block->make_free(size);
|
||||
free_blocks.add_to_free_list(free_block);
|
||||
iter((Block*)start, size);
|
||||
|
||||
start = start + size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Block> void free_list_allocator<Block>::sweep() {
|
||||
auto null_sweep = [](Block* free_block, cell size) { };
|
||||
sweep(null_sweep);
|
||||
}
|
||||
|
||||
/* The forwarding map must be computed first by calling
|
||||
state.compute_forwarding(). */
|
||||
template <typename Block>
|
||||
template <typename Iterator, typename Fixup>
|
||||
void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
|
||||
const Block** finger) {
|
||||
cell dest_addr = start;
|
||||
auto compact_block_func = [&](Block* block, cell size) {
|
||||
cell block_addr = (cell)block;
|
||||
if (!state.marked_p(block_addr))
|
||||
return;
|
||||
*finger = (Block*)(block_addr + size);
|
||||
memmove((Block*)dest_addr, block, size);
|
||||
iter(block, (Block*)dest_addr, size);
|
||||
dest_addr += size;
|
||||
};
|
||||
iterate(compact_block_func, fixup);
|
||||
|
||||
/* Now update the free list; there will be a single free block at
|
||||
the end */
|
||||
free_blocks.initial_free_list(start, end, dest_addr - start);
|
||||
}
|
||||
|
||||
/* During compaction we have to be careful and measure object sizes
|
||||
differently */
|
||||
template <typename Block>
|
||||
template <typename Iterator, typename Fixup>
|
||||
void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
|
||||
cell scan = this->start;
|
||||
while (scan != this->end) {
|
||||
Block* block = (Block*)scan;
|
||||
cell size = fixup.size(block);
|
||||
if (!block->free_p())
|
||||
iter(block, size);
|
||||
scan += size;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
template <typename Iterator>
|
||||
void free_list_allocator<Block>::iterate(Iterator& iter) {
|
||||
iterate(iter, no_fixup());
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
allocator_room free_list_allocator<Block>::as_allocator_room() {
|
||||
allocator_room room;
|
||||
room.size = size;
|
||||
room.occupied_space = occupied_space();
|
||||
room.total_free = free_space();
|
||||
room.contiguous_free = largest_free_block();
|
||||
room.free_block_count = free_block_count();
|
||||
return room;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -1,184 +0,0 @@
|
|||
namespace factor {
|
||||
|
||||
struct allocator_room {
|
||||
cell size;
|
||||
cell occupied_space;
|
||||
cell total_free;
|
||||
cell contiguous_free;
|
||||
cell free_block_count;
|
||||
};
|
||||
|
||||
template <typename Block> struct free_list_allocator {
|
||||
cell size;
|
||||
cell start;
|
||||
cell end;
|
||||
free_list free_blocks;
|
||||
mark_bits state;
|
||||
|
||||
free_list_allocator(cell size, cell start);
|
||||
void initial_free_list(cell occupied);
|
||||
bool contains_p(Block* block);
|
||||
bool can_allot_p(cell size);
|
||||
Block* allot(cell size);
|
||||
void free(Block* block);
|
||||
cell occupied_space();
|
||||
cell free_space();
|
||||
cell largest_free_block();
|
||||
cell free_block_count();
|
||||
void sweep();
|
||||
template <typename Iterator> void sweep(Iterator& iter);
|
||||
template <typename Iterator, typename Fixup>
|
||||
void compact(Iterator& iter, Fixup fixup, const Block** finger);
|
||||
template <typename Iterator, typename Fixup>
|
||||
void iterate(Iterator& iter, Fixup fixup);
|
||||
template <typename Iterator> void iterate(Iterator& iter);
|
||||
allocator_room as_allocator_room();
|
||||
};
|
||||
|
||||
template <typename Block>
|
||||
free_list_allocator<Block>::free_list_allocator(cell size, cell start)
|
||||
: size(size),
|
||||
start(start),
|
||||
end(start + size),
|
||||
state(mark_bits(size, start)) {
|
||||
initial_free_list(0);
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
void free_list_allocator<Block>::initial_free_list(cell occupied) {
|
||||
free_blocks.initial_free_list(start, end, occupied);
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
bool free_list_allocator<Block>::contains_p(Block* block) {
|
||||
return ((cell)block - start) < size;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
bool free_list_allocator<Block>::can_allot_p(cell size) {
|
||||
return free_blocks.can_allot_p(size);
|
||||
}
|
||||
|
||||
template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
|
||||
size = align(size, data_alignment);
|
||||
|
||||
free_heap_block* block = free_blocks.find_free_block(size);
|
||||
if (block) {
|
||||
block = free_blocks.split_free_block(block, size);
|
||||
return (Block*)block;
|
||||
} else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
template <typename Block> void free_list_allocator<Block>::free(Block* block) {
|
||||
free_heap_block* free_block = (free_heap_block*)block;
|
||||
free_block->make_free(block->size());
|
||||
free_blocks.add_to_free_list(free_block);
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::free_space() {
|
||||
return free_blocks.free_space;
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::occupied_space() {
|
||||
return size - free_blocks.free_space;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
cell free_list_allocator<Block>::largest_free_block() {
|
||||
return free_blocks.largest_free_block();
|
||||
}
|
||||
|
||||
template <typename Block> cell free_list_allocator<Block>::free_block_count() {
|
||||
return free_blocks.free_block_count;
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
template <typename Iterator>
|
||||
void free_list_allocator<Block>::sweep(Iterator& iter) {
|
||||
free_blocks.clear_free_list();
|
||||
|
||||
cell start = this->start;
|
||||
cell end = this->end;
|
||||
|
||||
while (start != end) {
|
||||
/* find next unmarked block */
|
||||
start = state.next_unmarked_block_after(start);
|
||||
|
||||
if (start != end) {
|
||||
/* find size */
|
||||
cell size = state.unmarked_block_size(start);
|
||||
FACTOR_ASSERT(size > 0);
|
||||
|
||||
free_heap_block* free_block = (free_heap_block*)start;
|
||||
free_block->make_free(size);
|
||||
free_blocks.add_to_free_list(free_block);
|
||||
iter((Block*)start, size);
|
||||
|
||||
start = start + size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Block> void free_list_allocator<Block>::sweep() {
|
||||
auto null_sweep = [](Block* free_block, cell size) { };
|
||||
sweep(null_sweep);
|
||||
}
|
||||
|
||||
/* The forwarding map must be computed first by calling
|
||||
state.compute_forwarding(). */
|
||||
template <typename Block>
|
||||
template <typename Iterator, typename Fixup>
|
||||
void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
|
||||
const Block** finger) {
|
||||
cell dest_addr = start;
|
||||
auto compact_block_func = [&](Block* block, cell size) {
|
||||
cell block_addr = (cell)block;
|
||||
if (!state.marked_p(block_addr))
|
||||
return;
|
||||
*finger = (Block*)(block_addr + size);
|
||||
memmove((Block*)dest_addr, block, size);
|
||||
iter(block, (Block*)dest_addr, size);
|
||||
dest_addr += size;
|
||||
};
|
||||
iterate(compact_block_func, fixup);
|
||||
|
||||
/* Now update the free list; there will be a single free block at
|
||||
the end */
|
||||
free_blocks.initial_free_list(start, end, dest_addr - start);
|
||||
}
|
||||
|
||||
/* During compaction we have to be careful and measure object sizes
|
||||
differently */
|
||||
template <typename Block>
|
||||
template <typename Iterator, typename Fixup>
|
||||
void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
|
||||
cell scan = this->start;
|
||||
while (scan != this->end) {
|
||||
Block* block = (Block*)scan;
|
||||
cell size = fixup.size(block);
|
||||
if (!block->free_p())
|
||||
iter(block, size);
|
||||
scan += size;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
template <typename Iterator>
|
||||
void free_list_allocator<Block>::iterate(Iterator& iter) {
|
||||
iterate(iter, no_fixup());
|
||||
}
|
||||
|
||||
template <typename Block>
|
||||
allocator_room free_list_allocator<Block>::as_allocator_room() {
|
||||
allocator_room room;
|
||||
|
||||
room.size = size;
|
||||
room.occupied_space = occupied_space();
|
||||
room.total_free = free_space();
|
||||
room.contiguous_free = largest_free_block();
|
||||
room.free_block_count = free_block_count();
|
||||
return room;
|
||||
}
|
||||
|
||||
}
|
|
@ -108,9 +108,8 @@ namespace factor { struct factor_vm; }
|
|||
#include "bump_allocator.hpp"
|
||||
#include "bitwise_hacks.hpp"
|
||||
#include "mark_bits.hpp"
|
||||
#include "free_list.hpp"
|
||||
#include "fixup.hpp"
|
||||
#include "free_list_allocator.hpp"
|
||||
#include "free_list.hpp"
|
||||
#include "write_barrier.hpp"
|
||||
#include "object_start_map.hpp"
|
||||
#include "aging_space.hpp"
|
||||
|
|
Loading…
Reference in New Issue