Solution to euler255 (slow and not so pretty)
parent
f65ffc6640
commit
bf054fe2b5
|
@ -0,0 +1,4 @@
|
|||
USING: project-euler.255 tools.test ;
|
||||
IN: project-euler.255.tests
|
||||
|
||||
[ 4.4474011180 ] [ euler255 ] unit-test
|
|
@ -0,0 +1,93 @@
|
|||
! Copyright (C) 2009 Jon Harper.
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: project-euler.common math kernel sequences math.functions math.ranges prettyprint io threads math.parser locals arrays namespaces ;
|
||||
IN: project-euler.255
|
||||
|
||||
! http://projecteuler.net/index.php?section=problems&id=255
|
||||
|
||||
! DESCRIPTION
|
||||
! -----------
|
||||
! We define the rounded-square-root of a positive integer n as the square root of n rounded to the nearest integer.
|
||||
!
|
||||
! The following procedure (essentially Heron's method adapted to integer arithmetic) finds the rounded-square-root of n:
|
||||
!
|
||||
! Let d be the number of digits of the number n.
|
||||
! If d is odd, set x_(0) = 2×10^((d-1)⁄2).
|
||||
! If d is even, set x_(0) = 7×10^((d-2)⁄2).
|
||||
! Repeat:
|
||||
!
|
||||
! until x_(k+1) = x_(k).
|
||||
!
|
||||
! As an example, let us find the rounded-square-root of n = 4321.
|
||||
! n has 4 digits, so x_(0) = 7×10^((4-2)⁄2) = 70.
|
||||
!
|
||||
! Since x_(2) = x_(1), we stop here.
|
||||
! So, after just two iterations, we have found that the rounded-square-root of 4321 is 66 (the actual square root is 65.7343137…).
|
||||
!
|
||||
! The number of iterations required when using this method is surprisingly low.
|
||||
! For example, we can find the rounded-square-root of a 5-digit integer (10,000 ≤ n ≤ 99,999) with an average of 3.2102888889 iterations (the average value was rounded to 10 decimal places).
|
||||
!
|
||||
! Using the procedure described above, what is the average number of iterations required to find the rounded-square-root of a 14-digit number (10^(13) ≤ n < 10^(14))?
|
||||
! Give your answer rounded to 10 decimal places.
|
||||
!
|
||||
! Note: The symbols ⌊x⌋ and ⌈x⌉ represent the floor function and ceiling function respectively.
|
||||
!
|
||||
<PRIVATE
|
||||
|
||||
: round-to-10-decimals ( a -- b ) 1.0e10 * round 1.0e10 / ;
|
||||
|
||||
! same as produce, but outputs the sum instead of the sequence of results
|
||||
: produce-sum ( id pred quot -- sum )
|
||||
[ 0 ] 2dip [ [ dip swap ] curry ] [ [ dip + ] curry ] bi* while ; inline
|
||||
|
||||
: x0 ( i -- x0 )
|
||||
number-length dup even?
|
||||
[ 2 - 2 / 10 swap ^ 7 * ]
|
||||
[ 1 - 2 / 10 swap ^ 2 * ] if ;
|
||||
: ⌈a/b⌉ ( a b -- ⌈a/b⌉ )
|
||||
[ 1 - + ] keep /i ;
|
||||
|
||||
: xk+1 ( n xk -- xk+1 )
|
||||
[ ⌈a/b⌉ ] keep + 2 /i ;
|
||||
|
||||
: next-multiple ( a multiple -- next )
|
||||
[ [ 1 - ] dip /i 1 + ] keep * ;
|
||||
|
||||
DEFER: iteration#
|
||||
! Gives the number of iterations when xk+1 has the same value for all a<=i<=n
|
||||
:: (iteration#) ( i xi a b -- # )
|
||||
a xi xk+1 dup xi =
|
||||
[ drop i b a - 1 + * ]
|
||||
[ i 1 + swap a b iteration# ] if ;
|
||||
|
||||
! Gives the number of iterations in the general case by breaking into intervals
|
||||
! in which xk+1 is the same.
|
||||
:: iteration# ( i xi a b -- # )
|
||||
a
|
||||
a xi next-multiple
|
||||
[ dup b < ]
|
||||
[
|
||||
! set up the values for the next iteration
|
||||
[ nip [ 1 + ] [ xi + ] bi ] 2keep
|
||||
! set up the arguments for (iteration#)
|
||||
[ i xi ] 2dip (iteration#)
|
||||
] produce-sum
|
||||
! deal with the last numbers
|
||||
[ drop b [ i xi ] 2dip (iteration#) ] dip
|
||||
+ ;
|
||||
|
||||
: 10^ ( a -- 10^a ) 10 swap ^ ; inline
|
||||
|
||||
: (euler255) ( a b -- answer )
|
||||
[ 10^ ] bi@ 1 -
|
||||
[ [ drop x0 1 swap ] 2keep iteration# ] 2keep
|
||||
swap - 1 + /f ;
|
||||
|
||||
|
||||
PRIVATE>
|
||||
|
||||
: euler255 ( -- answer )
|
||||
13 14 (euler255) round-to-10-decimals ;
|
||||
|
||||
SOLUTION: euler255
|
||||
|
|
@ -0,0 +1 @@
|
|||
Jon Harper
|
Loading…
Reference in New Issue