VM: Refactor free_list to Factor style

db4
Erik Charlebois 2013-05-11 22:01:24 -04:00
parent 83b69d45f8
commit c0aa1c7b3e
2 changed files with 113 additions and 139 deletions

View File

@ -1,135 +1,117 @@
#include "master.hpp"
namespace factor
{
namespace factor {
void free_list::clear_free_list()
{
for(cell i = 0; i < free_list_count; i++)
small_blocks[i].clear();
large_blocks.clear();
free_block_count = 0;
free_space = 0;
void free_list::clear_free_list() {
for (cell i = 0; i < free_list_count; i++)
small_blocks[i].clear();
large_blocks.clear();
free_block_count = 0;
free_space = 0;
}
void free_list::initial_free_list(cell start, cell end, cell occupied)
{
clear_free_list();
if(occupied != end - start)
{
free_heap_block *last_block = (free_heap_block *)(start + occupied);
last_block->make_free(end - (cell)last_block);
add_to_free_list(last_block);
}
void free_list::initial_free_list(cell start, cell end, cell occupied) {
clear_free_list();
if (occupied != end - start) {
free_heap_block* last_block = (free_heap_block*)(start + occupied);
last_block->make_free(end - (cell) last_block);
add_to_free_list(last_block);
}
}
void free_list::add_to_free_list(free_heap_block *block)
{
cell size = block->size();
void free_list::add_to_free_list(free_heap_block* block) {
cell size = block->size();
free_block_count++;
free_space += size;
free_block_count++;
free_space += size;
if(size < free_list_count * data_alignment)
small_blocks[size / data_alignment].push_back(block);
else
large_blocks.insert(block);
if (size < free_list_count * data_alignment)
small_blocks[size / data_alignment].push_back(block);
else
large_blocks.insert(block);
}
free_heap_block *free_list::find_free_block(cell size)
{
/* Check small free lists */
if(size / data_alignment < free_list_count)
{
std::vector<free_heap_block *> &blocks = small_blocks[size / data_alignment];
if(blocks.size() == 0)
{
/* Round up to a multiple of 'size' */
cell large_block_size = ((allocation_page_size + size - 1) / size) * size;
free_heap_block* free_list::find_free_block(cell size) {
/* Check small free lists */
if (size / data_alignment < free_list_count) {
std::vector<free_heap_block*>& blocks = small_blocks[size / data_alignment];
if (blocks.size() == 0) {
/* Round up to a multiple of 'size' */
cell large_block_size = ((allocation_page_size + size - 1) / size) * size;
/* Allocate a block this big */
free_heap_block *large_block = find_free_block(large_block_size);
if(!large_block) return NULL;
/* Allocate a block this big */
free_heap_block* large_block = find_free_block(large_block_size);
if (!large_block)
return NULL;
large_block = split_free_block(large_block,large_block_size);
large_block = split_free_block(large_block, large_block_size);
/* Split it up into pieces and add each piece back to the free list */
for(cell offset = 0; offset < large_block_size; offset += size)
{
free_heap_block *small_block = large_block;
large_block = (free_heap_block *)((cell)large_block + size);
small_block->make_free(size);
add_to_free_list(small_block);
}
}
/* Split it up into pieces and add each piece back to the free list */
for (cell offset = 0; offset < large_block_size; offset += size) {
free_heap_block* small_block = large_block;
large_block = (free_heap_block*)((cell) large_block + size);
small_block->make_free(size);
add_to_free_list(small_block);
}
}
free_heap_block *block = blocks.back();
blocks.pop_back();
free_heap_block* block = blocks.back();
blocks.pop_back();
free_block_count--;
free_space -= block->size();
free_block_count--;
free_space -= block->size();
return block;
}
else
{
/* Check large free list */
free_heap_block key;
key.make_free(size);
large_block_set::iterator iter = large_blocks.lower_bound(&key);
large_block_set::iterator end = large_blocks.end();
return block;
} else {
/* Check large free list */
free_heap_block key;
key.make_free(size);
large_block_set::iterator iter = large_blocks.lower_bound(&key);
large_block_set::iterator end = large_blocks.end();
if(iter != end)
{
free_heap_block *block = *iter;
large_blocks.erase(iter);
if (iter != end) {
free_heap_block* block = *iter;
large_blocks.erase(iter);
free_block_count--;
free_space -= block->size();
free_block_count--;
free_space -= block->size();
return block;
}
return block;
}
return NULL;
}
return NULL;
}
}
free_heap_block *free_list::split_free_block(free_heap_block *block, cell size)
{
if(block->size() != size)
{
/* split the block in two */
free_heap_block *split = (free_heap_block *)((cell)block + size);
split->make_free(block->size() - size);
block->make_free(size);
add_to_free_list(split);
}
free_heap_block* free_list::split_free_block(free_heap_block* block,
cell size) {
if (block->size() != size) {
/* split the block in two */
free_heap_block* split = (free_heap_block*)((cell) block + size);
split->make_free(block->size() - size);
block->make_free(size);
add_to_free_list(split);
}
return block;
return block;
}
bool free_list::can_allot_p(cell size)
{
return largest_free_block() >= std::max(size,allocation_page_size);
bool free_list::can_allot_p(cell size) {
return largest_free_block() >= std::max(size, allocation_page_size);
}
cell free_list::largest_free_block()
{
if(large_blocks.size())
{
large_block_set::reverse_iterator last = large_blocks.rbegin();
return (*last)->size();
}
else
{
for(int i = free_list_count - 1; i >= 0; i--)
{
if(small_blocks[i].size())
return small_blocks[i].back()->size();
}
cell free_list::largest_free_block() {
if (large_blocks.size()) {
large_block_set::reverse_iterator last = large_blocks.rbegin();
return (*last)->size();
} else {
for (int i = free_list_count - 1; i >= 0; i--) {
if (small_blocks[i].size())
return small_blocks[i].back()->size();
}
return 0;
}
return 0;
}
}
}

View File

@ -1,54 +1,46 @@
namespace factor
{
namespace factor {
static const cell free_list_count = 32;
static const cell allocation_page_size = 1024;
struct free_heap_block
{
cell header;
struct free_heap_block {
cell header;
bool free_p() const
{
return (header & 1) == 1;
}
bool free_p() const { return (header & 1) == 1; }
cell size() const
{
cell size = header & ~7;
FACTOR_ASSERT(size > 0);
return size;
}
cell size() const {
cell size = header & ~7;
FACTOR_ASSERT(size > 0);
return size;
}
void make_free(cell size)
{
FACTOR_ASSERT(size > 0);
header = size | 1;
}
void make_free(cell size) {
FACTOR_ASSERT(size > 0);
header = size | 1;
}
};
struct block_size_compare {
bool operator()(free_heap_block *a, free_heap_block *b) const
{
return a->size() < b->size();
}
bool operator()(free_heap_block* a, free_heap_block* b) const {
return a->size() < b->size();
}
};
typedef std::multiset<free_heap_block *, block_size_compare> large_block_set;
typedef std::multiset<free_heap_block*, block_size_compare> large_block_set;
struct free_list {
std::vector<free_heap_block *> small_blocks[free_list_count];
large_block_set large_blocks;
cell free_block_count;
cell free_space;
std::vector<free_heap_block*> small_blocks[free_list_count];
large_block_set large_blocks;
cell free_block_count;
cell free_space;
void clear_free_list();
void initial_free_list(cell start, cell end, cell occupied);
void add_to_free_list(free_heap_block *block);
free_heap_block *find_free_block(cell size);
free_heap_block *split_free_block(free_heap_block *block, cell size);
bool can_allot_p(cell size);
cell largest_free_block();
void clear_free_list();
void initial_free_list(cell start, cell end, cell occupied);
void add_to_free_list(free_heap_block* block);
free_heap_block* find_free_block(cell size);
free_heap_block* split_free_block(free_heap_block* block, cell size);
bool can_allot_p(cell size);
cell largest_free_block();
};
}