vm: fix fencepost error in write barrier on large object allocation; fixes benchmark.sort crash

db4
Slava Pestov 2009-11-11 19:31:18 -06:00
parent 5169dddc40
commit c2b3d6b894
7 changed files with 131 additions and 25 deletions

View File

@ -44,6 +44,7 @@ DLL_OBJS = $(PLAF_DLL_OBJS) \
vm/compaction.o \
vm/contexts.o \
vm/data_heap.o \
vm/data_heap_checker.o \
vm/debug.o \
vm/dispatch.o \
vm/errors.o \

101
vm/data_heap_checker.cpp Normal file
View File

@ -0,0 +1,101 @@
#include "master.hpp"
/* A tool to debug write barriers. Call check_data_heap() to ensure that all
cards that should be marked are actually marked. */
namespace factor
{
enum generation {
nursery_generation,
aging_generation,
tenured_generation
};
inline generation generation_of(factor_vm *parent, object *obj)
{
if(parent->data->nursery->contains_p(obj))
return nursery_generation;
else if(parent->data->aging->contains_p(obj))
return aging_generation;
else if(parent->data->tenured->contains_p(obj))
return tenured_generation;
else
{
critical_error("Bad object",(cell)obj);
return (generation)-1;
}
}
struct slot_checker {
factor_vm *parent;
object *obj;
generation gen;
explicit slot_checker(factor_vm *parent_, object *obj_, generation gen_) :
parent(parent_), obj(obj_), gen(gen_) {}
void check_write_barrier(cell *slot_ptr, generation target, char mask)
{
cell object_card_pointer = parent->cards_offset + ((cell)obj >> card_bits);
cell slot_card_pointer = parent->cards_offset + ((cell)slot_ptr >> card_bits);
char slot_card_value = *(char *)slot_card_pointer;
if((slot_card_value & mask) != mask)
{
printf("card not marked\n");
printf("source generation: %d\n",gen);
printf("target generation: %d\n",target);
printf("object: 0x%lx\n",(cell)obj);
printf("object type: %ld\n",obj->type());
printf("slot pointer: 0x%lx\n",(cell)slot_ptr);
printf("slot value: 0x%lx\n",*slot_ptr);
printf("card of object: 0x%lx\n",object_card_pointer);
printf("card of slot: 0x%lx\n",slot_card_pointer);
printf("\n");
parent->factorbug();
}
}
void operator()(cell *slot_ptr)
{
if(!immediate_p(*slot_ptr))
{
generation target = generation_of(parent,untag<object>(*slot_ptr));
switch(gen)
{
case nursery_generation:
break;
case aging_generation:
if(target == nursery_generation)
check_write_barrier(slot_ptr,target,card_points_to_nursery);
break;
case tenured_generation:
if(target == nursery_generation)
check_write_barrier(slot_ptr,target,card_points_to_nursery);
else if(target == aging_generation)
check_write_barrier(slot_ptr,target,card_points_to_aging);
break;
}
}
}
};
struct object_checker {
factor_vm *parent;
explicit object_checker(factor_vm *parent_) : parent(parent_) {}
void operator()(object *obj)
{
slot_checker checker(parent,obj,generation_of(parent,obj));
obj->each_slot(checker);
}
};
void factor_vm::check_data_heap()
{
object_checker checker(this);
each_object(checker);
}
}

View File

@ -288,7 +288,7 @@ struct data_reference_object_visitor {
void operator()(object *obj)
{
data_reference_slot_visitor visitor(look_for,obj,parent);
parent->do_slots(obj,visitor);
obj->each_slot(visitor);
}
};

View File

@ -138,7 +138,7 @@ void factor_vm::relocate_object(object *object,
cell type = object->type();
/* Tuple relocation is a bit trickier; we have to fix up the
layout object before we can get the tuple size, so do_slots is
layout object before we can get the tuple size, so each_slot is
out of the question */
if(type == TUPLE_TYPE)
{
@ -154,7 +154,7 @@ void factor_vm::relocate_object(object *object,
else
{
object_fixupper fixupper(this,data_relocation_base);
do_slots(object,fixupper);
object->each_slot(fixupper);
switch(type)
{

View File

@ -102,7 +102,9 @@ struct object {
cell size() const;
cell binary_payload_start() const;
cell *slots() const { return (cell *)this; }
cell *slots() const { return (cell *)this; }
template<typename Iterator> void each_slot(Iterator &iter);
/* Only valid for objects in tenured space; must cast to free_heap_block
to do anything with it if its free */

View File

@ -98,4 +98,19 @@ inline static bool save_env_p(cell i)
return (i >= OBJ_FIRST_SAVE && i <= OBJ_LAST_SAVE);
}
template<typename Iterator> void object::each_slot(Iterator &iter)
{
cell scan = (cell)this;
cell payload_start = binary_payload_start();
cell end = scan + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan);
scan += sizeof(cell);
}
}
}

View File

@ -262,11 +262,16 @@ struct factor_vm
inline void write_barrier(object *obj, cell size)
{
char *start = (char *)obj;
for(cell offset = 0; offset < size; offset += card_size)
write_barrier((cell *)(start + offset));
cell start = (cell)obj & -card_size;
cell end = ((cell)obj + size + card_size - 1) & -card_size;
for(cell offset = start; offset < end; offset += card_size)
write_barrier((cell *)offset);
}
// data heap checker
void check_data_heap();
// gc
void end_gc();
void start_gc_again();
@ -585,24 +590,6 @@ struct factor_vm
void save_callstack_bottom(stack_frame *callstack_bottom);
template<typename Iterator> void iterate_callstack(context *ctx, Iterator &iterator);
/* Every object has a regular representation in the runtime, which makes GC
much simpler. Every slot of the object until binary_payload_start is a pointer
to some other object. */
template<typename Iterator> void do_slots(object *obj, Iterator &iter)
{
cell scan = (cell)obj;
cell payload_start = obj->binary_payload_start();
cell end = scan + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan);
scan += sizeof(cell);
}
}
//alien
char *pinned_alien_offset(cell obj);
cell allot_alien(cell delegate_, cell displacement);