Add math.algebra module with some useful words.
- ext-euclidian implements the extended Euclidian algorithm - ring-inverse computes an inverse in a Z/nZ ring - chinese-remainder solves a multi-constraints modular equationdb4
parent
9f0fb715ab
commit
c4529fb557
|
@ -0,0 +1,14 @@
|
|||
USING: help.markup help.syntax ;
|
||||
IN: math.algebra
|
||||
|
||||
HELP: ext-euclidian
|
||||
{ $values { "a" "a positive integer" } { "b" "a positive integer" } { "gcd" "a positive integer" } { "u" "an integer" } { "v" "an integer" } }
|
||||
{ $description "Compute the greatest common divisor " { $snippet "gcd" } " of integers " { $snippet "a" } " and " { $snippet "b" } " using the extended Euclidian algorithm. In addition, this word also computes two other values " { $snippet "u" } " and " { $snippet "v" } " such that " { $snippet "a*u + b*v = gcd" } "." } ;
|
||||
|
||||
HELP: ring-inverse
|
||||
{ $values { "a" "a positive integer" } { "b" "a positive integer" } { "i" "a positive integer" } }
|
||||
{ $description "If " { $snippet "a" } " and " { $snippet "b" } " are coprime, " { $snippet "i" } " is the smallest positive integer such as " { $snippet "a*i = 1" } " in ring " { $snippet "Z/bZ" } "." } ;
|
||||
|
||||
HELP: chinese-remainder
|
||||
{ $values { "aseq" "a sequence of integers" } { "nseq" "a sequence of positive integers" } { "x" "an integer" } }
|
||||
{ $description "If " { $snippet "nseq" } " integers are pairwise coprimes, " { $snippet "x" } " is the smallest positive integer congruent to each element in " { $snippet "aseq" } " modulo the corresponding element in " { $snippet "nseq" } "." } ;
|
|
@ -0,0 +1,5 @@
|
|||
USING: math.algebra tools.test ;
|
||||
|
||||
{ 2 5 -2 } [ 10 24 ext-euclidian ] unit-test
|
||||
{ 17 } [ 19 23 ring-inverse ] unit-test
|
||||
{ 11 } [ { 2 3 1 } { 3 4 5 } chinese-remainder ] unit-test
|
|
@ -0,0 +1,34 @@
|
|||
! Copyright (c) 2007 Samuel Tardieu
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: kernel math math.ranges namespaces sequences vars math.algebra ;
|
||||
IN: math.algebra
|
||||
|
||||
<PRIVATE
|
||||
|
||||
VARS: r-1 u-1 v-1 r u v ;
|
||||
|
||||
: init ( a b -- )
|
||||
>r >r-1 0 >u 1 >u-1 1 >v 0 >v-1 ;
|
||||
|
||||
: advance ( r u v -- )
|
||||
v> >v-1 >v u> >u-1 >u r> >r-1 >r ; inline
|
||||
|
||||
: step ( -- )
|
||||
r-1> r> 2dup /mod drop [ * - ] keep u-1> over u> * - v-1> rot v> * -
|
||||
advance ;
|
||||
|
||||
PRIVATE>
|
||||
|
||||
! Extended Euclidian: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
: ext-euclidian ( a b -- gcd u v )
|
||||
[ init [ r> 0 > ] [ step ] [ ] while r-1> u-1> v-1> ] with-scope ; foldable
|
||||
|
||||
! Inverse a in ring Z/bZ
|
||||
: ring-inverse ( a b -- i )
|
||||
[ ext-euclidian drop nip ] keep rem ; foldable
|
||||
|
||||
! Chinese remainder: http://en.wikipedia.org/wiki/Chinese_remainder_theorem
|
||||
: chinese-remainder ( aseq nseq -- x )
|
||||
dup product
|
||||
[ [ over / [ ext-euclidian ] keep * 2nip * ] curry 2map sum ] keep rem ;
|
||||
foldable
|
|
@ -0,0 +1 @@
|
|||
Samuel Tardieu
|
|
@ -0,0 +1 @@
|
|||
Various algebra-related words
|
Loading…
Reference in New Issue