VM: Refactor image.cpp/hpp to Factor style

db4
Erik Charlebois 2013-05-11 22:05:00 -04:00
parent 4ea2e9ed06
commit cae6a5e855
2 changed files with 297 additions and 331 deletions

View File

@ -1,389 +1,356 @@
#include "master.hpp"
namespace factor
{
namespace factor {
/* Certain special objects in the image are known to the runtime */
void factor_vm::init_objects(image_header *h)
{
memcpy(special_objects,h->special_objects,sizeof(special_objects));
void factor_vm::init_objects(image_header* h) {
memcpy(special_objects, h->special_objects, sizeof(special_objects));
true_object = h->true_object;
bignum_zero = h->bignum_zero;
bignum_pos_one = h->bignum_pos_one;
bignum_neg_one = h->bignum_neg_one;
true_object = h->true_object;
bignum_zero = h->bignum_zero;
bignum_pos_one = h->bignum_pos_one;
bignum_neg_one = h->bignum_neg_one;
}
void factor_vm::load_data_heap(FILE *file, image_header *h, vm_parameters *p)
{
p->tenured_size = std::max((h->data_size * 3) / 2,p->tenured_size);
void factor_vm::load_data_heap(FILE* file, image_header* h, vm_parameters* p) {
p->tenured_size = std::max((h->data_size * 3) / 2, p->tenured_size);
init_data_heap(p->young_size,
p->aging_size,
p->tenured_size);
init_data_heap(p->young_size, p->aging_size, p->tenured_size);
fixnum bytes_read = safe_fread((void*)data->tenured->start,1,h->data_size,file);
fixnum bytes_read =
safe_fread((void*)data->tenured->start, 1, h->data_size, file);
if((cell)bytes_read != h->data_size)
{
std::cout << "truncated image: " << bytes_read << " bytes read, ";
std::cout << h->data_size << " bytes expected\n";
fatal_error("load_data_heap failed",0);
}
if ((cell) bytes_read != h->data_size) {
std::cout << "truncated image: " << bytes_read << " bytes read, ";
std::cout << h->data_size << " bytes expected\n";
fatal_error("load_data_heap failed", 0);
}
data->tenured->initial_free_list(h->data_size);
data->tenured->initial_free_list(h->data_size);
}
void factor_vm::load_code_heap(FILE *file, image_header *h, vm_parameters *p)
{
if(h->code_size > p->code_size)
fatal_error("Code heap too small to fit image",h->code_size);
void factor_vm::load_code_heap(FILE* file, image_header* h, vm_parameters* p) {
if (h->code_size > p->code_size)
fatal_error("Code heap too small to fit image", h->code_size);
init_code_heap(p->code_size);
init_code_heap(p->code_size);
if(h->code_size != 0)
{
size_t bytes_read = safe_fread(code->allocator->first_block(),1,h->code_size,file);
if(bytes_read != h->code_size)
{
std::cout << "truncated image: " << bytes_read << " bytes read, ";
std::cout << h->code_size << " bytes expected\n";
fatal_error("load_code_heap failed",0);
}
}
if (h->code_size != 0) {
size_t bytes_read =
safe_fread(code->allocator->first_block(), 1, h->code_size, file);
if (bytes_read != h->code_size) {
std::cout << "truncated image: " << bytes_read << " bytes read, ";
std::cout << h->code_size << " bytes expected\n";
fatal_error("load_code_heap failed", 0);
}
}
code->allocator->initial_free_list(h->code_size);
code->initialize_all_blocks_set();
code->allocator->initial_free_list(h->code_size);
code->initialize_all_blocks_set();
}
struct startup_fixup {
static const bool translated_code_block_map = true;
static const bool translated_code_block_map = true;
cell data_offset;
cell code_offset;
cell data_offset;
cell code_offset;
explicit startup_fixup(cell data_offset_, cell code_offset_) :
data_offset(data_offset_), code_offset(code_offset_) {}
explicit startup_fixup(cell data_offset_, cell code_offset_)
: data_offset(data_offset_), code_offset(code_offset_) {}
object *fixup_data(object *obj)
{
return (object *)((cell)obj + data_offset);
}
object* fixup_data(object* obj) {
return (object*)((cell) obj + data_offset);
}
code_block *fixup_code(code_block *obj)
{
return (code_block *)((cell)obj + code_offset);
}
code_block* fixup_code(code_block* obj) {
return (code_block*)((cell) obj + code_offset);
}
object *translate_data(const object *obj)
{
return fixup_data((object *)obj);
}
object* translate_data(const object* obj) { return fixup_data((object*)obj); }
code_block *translate_code(const code_block *compiled)
{
return fixup_code((code_block *)compiled);
}
code_block* translate_code(const code_block* compiled) {
return fixup_code((code_block*)compiled);
}
cell size(const object *obj)
{
return obj->size(*this);
}
cell size(const object* obj) { return obj->size(*this); }
cell size(code_block *compiled)
{
return compiled->size(*this);
}
cell size(code_block* compiled) { return compiled->size(*this); }
};
struct start_object_updater {
factor_vm *parent;
startup_fixup fixup;
slot_visitor<startup_fixup> data_visitor;
code_block_visitor<startup_fixup> code_visitor;
factor_vm* parent;
startup_fixup fixup;
slot_visitor<startup_fixup> data_visitor;
code_block_visitor<startup_fixup> code_visitor;
start_object_updater(factor_vm *parent_, startup_fixup fixup_) :
parent(parent_),
fixup(fixup_),
data_visitor(slot_visitor<startup_fixup>(parent_,fixup_)),
code_visitor(code_block_visitor<startup_fixup>(parent_,fixup_)) {}
start_object_updater(factor_vm* parent_, startup_fixup fixup_)
: parent(parent_),
fixup(fixup_),
data_visitor(slot_visitor<startup_fixup>(parent_, fixup_)),
code_visitor(code_block_visitor<startup_fixup>(parent_, fixup_)) {}
void operator()(object *obj, cell size)
{
parent->data->tenured->starts.record_object_start_offset(obj);
void operator()(object* obj, cell size) {
parent->data->tenured->starts.record_object_start_offset(obj);
data_visitor.visit_slots(obj);
data_visitor.visit_slots(obj);
switch(obj->type())
{
case ALIEN_TYPE:
{
switch (obj->type()) {
case ALIEN_TYPE: {
alien *ptr = (alien *)obj;
alien* ptr = (alien*)obj;
if(to_boolean(ptr->base))
ptr->update_address();
else
ptr->expired = parent->true_object;
break;
}
case DLL_TYPE:
{
parent->ffi_dlopen((dll *)obj);
break;
}
default:
{
code_visitor.visit_object_code_block(obj);
break;
}
}
}
if (to_boolean(ptr->base))
ptr->update_address();
else
ptr->expired = parent->true_object;
break;
}
case DLL_TYPE: {
parent->ffi_dlopen((dll*)obj);
break;
}
default: {
code_visitor.visit_object_code_block(obj);
break;
}
}
}
};
void factor_vm::fixup_data(cell data_offset, cell code_offset)
{
startup_fixup fixup(data_offset,code_offset);
slot_visitor<startup_fixup> data_workhorse(this,fixup);
data_workhorse.visit_roots();
void factor_vm::fixup_data(cell data_offset, cell code_offset) {
startup_fixup fixup(data_offset, code_offset);
slot_visitor<startup_fixup> data_workhorse(this, fixup);
data_workhorse.visit_roots();
start_object_updater updater(this,fixup);
data->tenured->iterate(updater,fixup);
start_object_updater updater(this, fixup);
data->tenured->iterate(updater, fixup);
}
struct startup_code_block_relocation_visitor {
factor_vm *parent;
startup_fixup fixup;
slot_visitor<startup_fixup> data_visitor;
factor_vm* parent;
startup_fixup fixup;
slot_visitor<startup_fixup> data_visitor;
startup_code_block_relocation_visitor(factor_vm *parent_, startup_fixup fixup_) :
parent(parent_),
fixup(fixup_),
data_visitor(slot_visitor<startup_fixup>(parent_,fixup_)) {}
startup_code_block_relocation_visitor(factor_vm* parent_,
startup_fixup fixup_)
: parent(parent_),
fixup(fixup_),
data_visitor(slot_visitor<startup_fixup>(parent_, fixup_)) {}
void operator()(instruction_operand op)
{
code_block *compiled = op.compiled;
cell old_offset = op.rel_offset() + (cell)compiled->entry_point() - fixup.code_offset;
void operator()(instruction_operand op) {
code_block* compiled = op.compiled;
cell old_offset =
op.rel_offset() + (cell) compiled->entry_point() - fixup.code_offset;
switch(op.rel_type())
{
case RT_LITERAL:
{
cell value = op.load_value(old_offset);
if(immediate_p(value))
op.store_value(value);
else
op.store_value(RETAG(fixup.fixup_data(untag<object>(value)),TAG(value)));
break;
}
case RT_ENTRY_POINT:
case RT_ENTRY_POINT_PIC:
case RT_ENTRY_POINT_PIC_TAIL:
case RT_HERE:
{
cell value = op.load_value(old_offset);
cell offset = TAG(value);
code_block *compiled = (code_block *)UNTAG(value);
op.store_value((cell)fixup.fixup_code(compiled) + offset);
break;
}
case RT_UNTAGGED:
break;
default:
parent->store_external_address(op);
break;
}
}
switch (op.rel_type()) {
case RT_LITERAL: {
cell value = op.load_value(old_offset);
if (immediate_p(value))
op.store_value(value);
else
op.store_value(
RETAG(fixup.fixup_data(untag<object>(value)), TAG(value)));
break;
}
case RT_ENTRY_POINT:
case RT_ENTRY_POINT_PIC:
case RT_ENTRY_POINT_PIC_TAIL:
case RT_HERE: {
cell value = op.load_value(old_offset);
cell offset = TAG(value);
code_block* compiled = (code_block*)UNTAG(value);
op.store_value((cell) fixup.fixup_code(compiled) + offset);
break;
}
case RT_UNTAGGED:
break;
default:
parent->store_external_address(op);
break;
}
}
};
struct startup_code_block_updater {
factor_vm *parent;
startup_fixup fixup;
factor_vm* parent;
startup_fixup fixup;
startup_code_block_updater(factor_vm *parent_, startup_fixup fixup_) :
parent(parent_), fixup(fixup_) {}
startup_code_block_updater(factor_vm* parent_, startup_fixup fixup_)
: parent(parent_), fixup(fixup_) {}
void operator()(code_block *compiled, cell size)
{
slot_visitor<startup_fixup> data_visitor(parent,fixup);
data_visitor.visit_code_block_objects(compiled);
void operator()(code_block* compiled, cell size) {
slot_visitor<startup_fixup> data_visitor(parent, fixup);
data_visitor.visit_code_block_objects(compiled);
startup_code_block_relocation_visitor code_visitor(parent,fixup);
compiled->each_instruction_operand(code_visitor);
}
startup_code_block_relocation_visitor code_visitor(parent, fixup);
compiled->each_instruction_operand(code_visitor);
}
};
void factor_vm::fixup_code(cell data_offset, cell code_offset)
{
startup_fixup fixup(data_offset,code_offset);
startup_code_block_updater updater(this,fixup);
code->allocator->iterate(updater,fixup);
void factor_vm::fixup_code(cell data_offset, cell code_offset) {
startup_fixup fixup(data_offset, code_offset);
startup_code_block_updater updater(this, fixup);
code->allocator->iterate(updater, fixup);
}
bool factor_vm::read_embedded_image_footer(FILE *file, embedded_image_footer *footer)
{
safe_fseek(file, -(off_t)sizeof(embedded_image_footer), SEEK_END);
safe_fread(footer, (off_t)sizeof(embedded_image_footer), 1, file);
return footer->magic == image_magic;
bool factor_vm::read_embedded_image_footer(FILE* file,
embedded_image_footer* footer) {
safe_fseek(file, -(off_t) sizeof(embedded_image_footer), SEEK_END);
safe_fread(footer, (off_t) sizeof(embedded_image_footer), 1, file);
return footer->magic == image_magic;
}
FILE* factor_vm::open_image(vm_parameters *p)
{
if (p->embedded_image)
{
FILE *file = OPEN_READ(p->executable_path);
if (file == NULL)
{
std::cout << "Cannot open embedded image" << std::endl;
std::cout << strerror(errno) << std::endl;
exit(1);
}
embedded_image_footer footer;
if (!read_embedded_image_footer(file, &footer))
{
std::cout << "No embedded image" << std::endl;
exit(1);
}
safe_fseek(file, (off_t)footer.image_offset, SEEK_SET);
return file;
}
else
return OPEN_READ(p->image_path);
FILE* factor_vm::open_image(vm_parameters* p) {
if (p->embedded_image) {
FILE* file = OPEN_READ(p->executable_path);
if (file == NULL) {
std::cout << "Cannot open embedded image" << std::endl;
std::cout << strerror(errno) << std::endl;
exit(1);
}
embedded_image_footer footer;
if (!read_embedded_image_footer(file, &footer)) {
std::cout << "No embedded image" << std::endl;
exit(1);
}
safe_fseek(file, (off_t) footer.image_offset, SEEK_SET);
return file;
} else
return OPEN_READ(p->image_path);
}
/* Read an image file from disk, only done once during startup */
/* This function also initializes the data and code heaps */
void factor_vm::load_image(vm_parameters *p)
{
FILE *file = open_image(p);
if(file == NULL)
{
std::cout << "Cannot open image file: " << p->image_path << std::endl;
std::cout << strerror(errno) << std::endl;
exit(1);
}
void factor_vm::load_image(vm_parameters* p) {
FILE* file = open_image(p);
if (file == NULL) {
std::cout << "Cannot open image file: " << p->image_path << std::endl;
std::cout << strerror(errno) << std::endl;
exit(1);
}
image_header h;
if(safe_fread(&h,sizeof(image_header),1,file) != 1)
fatal_error("Cannot read image header",0);
image_header h;
if (safe_fread(&h, sizeof(image_header), 1, file) != 1)
fatal_error("Cannot read image header", 0);
if(h.magic != image_magic)
fatal_error("Bad image: magic number check failed",h.magic);
if (h.magic != image_magic)
fatal_error("Bad image: magic number check failed", h.magic);
if(h.version != image_version)
fatal_error("Bad image: version number check failed",h.version);
load_data_heap(file,&h,p);
load_code_heap(file,&h,p);
if (h.version != image_version)
fatal_error("Bad image: version number check failed", h.version);
safe_fclose(file);
load_data_heap(file, &h, p);
load_code_heap(file, &h, p);
init_objects(&h);
safe_fclose(file);
cell data_offset = data->tenured->start - h.data_relocation_base;
cell code_offset = code->allocator->start - h.code_relocation_base;
init_objects(&h);
fixup_data(data_offset,code_offset);
fixup_code(data_offset,code_offset);
cell data_offset = data->tenured->start - h.data_relocation_base;
cell code_offset = code->allocator->start - h.code_relocation_base;
/* Store image path name */
special_objects[OBJ_IMAGE] = allot_alien(false_object,(cell)p->image_path);
fixup_data(data_offset, code_offset);
fixup_code(data_offset, code_offset);
/* Store image path name */
special_objects[OBJ_IMAGE] = allot_alien(false_object, (cell) p->image_path);
}
/* Save the current image to disk */
bool factor_vm::save_image(const vm_char *saving_filename, const vm_char *filename)
{
FILE* file;
image_header h;
bool factor_vm::save_image(const vm_char* saving_filename,
const vm_char* filename) {
FILE* file;
image_header h;
file = OPEN_WRITE(saving_filename);
if(file == NULL)
{
std::cout << "Cannot open image file: " << saving_filename << std::endl;
std::cout << strerror(errno) << std::endl;
return false;
}
file = OPEN_WRITE(saving_filename);
if (file == NULL) {
std::cout << "Cannot open image file: " << saving_filename << std::endl;
std::cout << strerror(errno) << std::endl;
return false;
}
h.magic = image_magic;
h.version = image_version;
h.data_relocation_base = data->tenured->start;
h.data_size = data->tenured->occupied_space();
h.code_relocation_base = code->allocator->start;
h.code_size = code->allocator->occupied_space();
h.magic = image_magic;
h.version = image_version;
h.data_relocation_base = data->tenured->start;
h.data_size = data->tenured->occupied_space();
h.code_relocation_base = code->allocator->start;
h.code_size = code->allocator->occupied_space();
h.true_object = true_object;
h.bignum_zero = bignum_zero;
h.bignum_pos_one = bignum_pos_one;
h.bignum_neg_one = bignum_neg_one;
h.true_object = true_object;
h.bignum_zero = bignum_zero;
h.bignum_pos_one = bignum_pos_one;
h.bignum_neg_one = bignum_neg_one;
for(cell i = 0; i < special_object_count; i++)
h.special_objects[i] = (save_special_p(i) ? special_objects[i] : false_object);
for (cell i = 0; i < special_object_count; i++)
h.special_objects[i] =
(save_special_p(i) ? special_objects[i] : false_object);
bool ok = true;
bool ok = true;
if(safe_fwrite(&h,sizeof(image_header),1,file) != 1) ok = false;
if(safe_fwrite((void*)data->tenured->start,h.data_size,1,file) != 1) ok = false;
if(safe_fwrite(code->allocator->first_block(),h.code_size,1,file) != 1) ok = false;
safe_fclose(file);
if (safe_fwrite(&h, sizeof(image_header), 1, file) != 1)
ok = false;
if (safe_fwrite((void*)data->tenured->start, h.data_size, 1, file) != 1)
ok = false;
if (safe_fwrite(code->allocator->first_block(), h.code_size, 1, file) != 1)
ok = false;
safe_fclose(file);
if(!ok)
std::cout << "save-image failed: " << strerror(errno) << std::endl;
else
move_file(saving_filename,filename);
if (!ok)
std::cout << "save-image failed: " << strerror(errno) << std::endl;
else
move_file(saving_filename, filename);
return ok;
return ok;
}
void factor_vm::primitive_save_image()
{
/* do a full GC to push everything into tenured space */
primitive_compact_gc();
void factor_vm::primitive_save_image() {
/* do a full GC to push everything into tenured space */
primitive_compact_gc();
data_root<byte_array> path2(ctx->pop(),this);
path2.untag_check(this);
data_root<byte_array> path1(ctx->pop(),this);
path1.untag_check(this);
save_image((vm_char *)(path1.untagged() + 1 ),(vm_char *)(path2.untagged() + 1));
data_root<byte_array> path2(ctx->pop(), this);
path2.untag_check(this);
data_root<byte_array> path1(ctx->pop(), this);
path1.untag_check(this);
save_image((vm_char*)(path1.untagged() + 1),
(vm_char*)(path2.untagged() + 1));
}
void factor_vm::primitive_save_image_and_exit()
{
/* We unbox this before doing anything else. This is the only point
where we might throw an error, so we have to throw an error here since
later steps destroy the current image. */
data_root<byte_array> path2(ctx->pop(),this);
path2.untag_check(this);
data_root<byte_array> path1(ctx->pop(),this);
path1.untag_check(this);
void factor_vm::primitive_save_image_and_exit() {
/* We unbox this before doing anything else. This is the only point
where we might throw an error, so we have to throw an error here since
later steps destroy the current image. */
data_root<byte_array> path2(ctx->pop(), this);
path2.untag_check(this);
data_root<byte_array> path1(ctx->pop(), this);
path1.untag_check(this);
/* strip out special_objects data which is set on startup anyway */
for(cell i = 0; i < special_object_count; i++)
if(!save_special_p(i)) special_objects[i] = false_object;
/* strip out special_objects data which is set on startup anyway */
for (cell i = 0; i < special_object_count; i++)
if (!save_special_p(i))
special_objects[i] = false_object;
gc(collect_compact_op,
0, /* requested size */
false /* discard objects only reachable from stacks */);
gc(collect_compact_op, 0, /* requested size */
false /* discard objects only reachable from stacks */);
/* Save the image */
if(save_image((vm_char *)(path1.untagged() + 1), (vm_char *)(path2.untagged() + 1)))
exit(0);
else
exit(1);
/* Save the image */
if (save_image((vm_char*)(path1.untagged() + 1),
(vm_char*)(path2.untagged() + 1)))
exit(0);
else
exit(1);
}
bool factor_vm::embedded_image_p()
{
const vm_char *vm_path = vm_executable_path();
if (!vm_path)
return false;
FILE *file = OPEN_READ(vm_path);
if (!file)
return false;
embedded_image_footer footer;
bool embedded_p = read_embedded_image_footer(file, &footer);
fclose(file);
return embedded_p;
bool factor_vm::embedded_image_p() {
const vm_char* vm_path = vm_executable_path();
if (!vm_path)
return false;
FILE* file = OPEN_READ(vm_path);
if (!file)
return false;
embedded_image_footer footer;
bool embedded_p = read_embedded_image_footer(file, &footer);
fclose(file);
return embedded_p;
}
}

View File

@ -1,49 +1,48 @@
namespace factor
{
namespace factor {
static const cell image_magic = 0x0f0e0d0c;
static const cell image_version = 4;
struct embedded_image_footer {
cell magic;
cell image_offset;
cell magic;
cell image_offset;
};
struct image_header {
cell magic;
cell version;
/* base address of data heap when image was saved */
cell data_relocation_base;
/* size of heap */
cell data_size;
/* base address of code heap when image was saved */
cell code_relocation_base;
/* size of code heap */
cell code_size;
/* tagged pointer to t singleton */
cell true_object;
/* tagged pointer to bignum 0 */
cell bignum_zero;
/* tagged pointer to bignum 1 */
cell bignum_pos_one;
/* tagged pointer to bignum -1 */
cell bignum_neg_one;
/* Initial user environment */
cell special_objects[special_object_count];
cell magic;
cell version;
/* base address of data heap when image was saved */
cell data_relocation_base;
/* size of heap */
cell data_size;
/* base address of code heap when image was saved */
cell code_relocation_base;
/* size of code heap */
cell code_size;
/* tagged pointer to t singleton */
cell true_object;
/* tagged pointer to bignum 0 */
cell bignum_zero;
/* tagged pointer to bignum 1 */
cell bignum_pos_one;
/* tagged pointer to bignum -1 */
cell bignum_neg_one;
/* Initial user environment */
cell special_objects[special_object_count];
};
struct vm_parameters {
bool embedded_image;
const vm_char *image_path;
const vm_char *executable_path;
cell datastack_size, retainstack_size, callstack_size;
cell young_size, aging_size, tenured_size;
cell code_size;
bool fep;
bool console;
bool signals;
cell max_pic_size;
cell callback_size;
bool embedded_image;
const vm_char* image_path;
const vm_char* executable_path;
cell datastack_size, retainstack_size, callstack_size;
cell young_size, aging_size, tenured_size;
cell code_size;
bool fep;
bool console;
bool signals;
cell max_pic_size;
cell callback_size;
};
}