Solution to Project Euler problem 70

db4
Aaron Schaefer 2010-02-20 09:15:05 -06:00
parent 3f53d189fe
commit d0f4239d58
4 changed files with 91 additions and 18 deletions

View File

@ -1,7 +1,7 @@
! Copyright (c) 2009 Aaron Schaefer.
! See http://factorcode.org/license.txt for BSD license.
USING: arrays byte-arrays fry hints kernel math math.combinatorics
math.functions math.parser math.primes project-euler.common sequences sets ;
USING: arrays byte-arrays fry kernel math math.combinatorics math.functions
math.parser math.primes project-euler.common sequences sets ;
IN: project-euler.049
! http://projecteuler.net/index.php?section=problems&id=49
@ -25,16 +25,6 @@ IN: project-euler.049
<PRIVATE
: count-digits ( n -- byte-array )
10 <byte-array> [
'[ 10 /mod _ [ 1 + ] change-nth dup 0 > ] loop drop
] keep ;
HINTS: count-digits fixnum ;
: permutations? ( n m -- ? )
[ count-digits ] bi@ = ;
: collect-permutations ( seq -- seq )
[ V{ } clone ] [ dup ] bi* [
dupd '[ _ permutations? ] filter

View File

@ -0,0 +1,4 @@
USING: project-euler.070 tools.test ;
IN: project-euler.070.tests
[ 8319823 ] [ euler070 ] unit-test

View File

@ -0,0 +1,67 @@
! Copyright (c) 2010 Aaron Schaefer. All rights reserved.
! The contents of this file are licensed under the Simplified BSD License
! A copy of the license is available at http://factorcode.org/license.txt
USING: arrays assocs combinators.short-circuit kernel math math.combinatorics
math.functions math.primes math.ranges project-euler.common sequences ;
IN: project-euler.070
! http://projecteuler.net/index.php?section=problems&id=70
! DESCRIPTION
! -----------
! Euler's Totient function, φ(n) [sometimes called the phi function], is used
! to determine the number of positive numbers less than or equal to n which are
! relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less
! than nine and relatively prime to nine, φ(9)=6. The number 1 is considered to
! be relatively prime to every positive number, so φ(1)=1.
! Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation
! of 79180.
! Find the value of n, 1 < n < 10^(7), for which φ(n) is a permutation of n and
! the ratio n/φ(n) produces a minimum.
! SOLUTION
! --------
! For n/φ(n) to be minimised, φ(n) must be as close to n as possible; that is,
! we want to maximise φ(n). The minimal solution for n/φ(n) would be if n was
! prime giving n/(n-1) but since n-1 never is a permutation of n it cannot be
! prime.
! The next best thing would be if n only consisted of 2 prime factors close to
! (in this case) sqrt(10000000). Hence n = p1*p2 and we only need to search
! through a list of known prime pairs. In addition:
! φ(p1*p2) = p1*p2*(1-1/p1)(1-1/p2) = (p1-1)(p2-1)
! ...so we can compute φ(n) more efficiently.
<PRIVATE
! NOTE: ±1000 is an arbitrary range
: likely-prime-factors ( -- seq )
7 10^ sqrt >integer 1000 [ - ] [ + ] 2bi primes-between ; inline
: n-and-phi ( seq -- seq' )
#! ( seq = { p1, p2 } -- seq' = { n, φ(n) } )
[ product ] [ [ 1 - ] map product ] bi 2array ;
: fit-requirements? ( seq -- ? )
first2 { [ drop 7 10^ < ] [ permutations? ] } 2&& ;
: minimum-ratio ( seq -- n )
[ [ first2 / ] map [ infimum ] keep index ] keep nth first ;
PRIVATE>
: euler070 ( -- answer )
likely-prime-factors 2 all-combinations [ n-and-phi ] map
[ fit-requirements? ] filter minimum-ratio ;
! [ euler070 ] 100 ave-time
! 379 ms ave run time - 1.15 SD (100 trials)
SOLUTION: euler070

View File

@ -1,10 +1,11 @@
! Copyright (c) 2007-2010 Aaron Schaefer.
! See http://factorcode.org/license.txt for BSD license.
USING: accessors arrays kernel lists make math math.functions math.matrices
math.primes.miller-rabin math.order math.parser math.primes.factors
math.primes.lists math.ranges math.ratios namespaces parser prettyprint
quotations sequences sorting strings unicode.case vocabs vocabs.parser
words ;
! The contents of this file are licensed under the Simplified BSD License
! A copy of the license is available at http://factorcode.org/license.txt
USING: accessors arrays byte-arrays fry hints kernel lists make math
math.functions math.matrices math.order math.parser math.primes.factors
math.primes.lists math.primes.miller-rabin math.ranges math.ratios
namespaces parser prettyprint quotations sequences sorting strings
unicode.case vocabs vocabs.parser words ;
IN: project-euler.common
! A collection of words used by more than one Project Euler solution
@ -25,6 +26,7 @@ IN: project-euler.common
! pentagonal? - #44, #45
! penultimate - #69, #71
! propagate-all - #18, #67
! permutations? - #49, #70
! sum-proper-divisors - #21
! tau* - #12
! [uad]-transform - #39, #75
@ -38,6 +40,13 @@ IN: project-euler.common
<PRIVATE
: count-digits ( n -- byte-array )
10 <byte-array> [
'[ 10 /mod _ [ 1 + ] change-nth dup 0 > ] loop drop
] keep ;
HINTS: count-digits fixnum ;
: max-children ( seq -- seq )
[ dup length 1 - iota [ nth-pair max , ] with each ] { } make ;
@ -107,6 +116,9 @@ PRIVATE>
reverse [ first dup ] [ rest ] bi
[ propagate dup ] map nip reverse swap suffix ;
: permutations? ( n m -- ? )
[ count-digits ] bi@ = ;
: sum-divisors ( n -- sum )
dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;