Solution to Project Euler problem 70
							parent
							
								
									3f53d189fe
								
							
						
					
					
						commit
						d0f4239d58
					
				| 
						 | 
					@ -1,7 +1,7 @@
 | 
				
			||||||
! Copyright (c) 2009 Aaron Schaefer.
 | 
					! Copyright (c) 2009 Aaron Schaefer.
 | 
				
			||||||
! See http://factorcode.org/license.txt for BSD license.
 | 
					! See http://factorcode.org/license.txt for BSD license.
 | 
				
			||||||
USING: arrays byte-arrays fry hints kernel math math.combinatorics
 | 
					USING: arrays byte-arrays fry kernel math math.combinatorics math.functions
 | 
				
			||||||
    math.functions math.parser math.primes project-euler.common sequences sets ;
 | 
					    math.parser math.primes project-euler.common sequences sets ;
 | 
				
			||||||
IN: project-euler.049
 | 
					IN: project-euler.049
 | 
				
			||||||
 | 
					
 | 
				
			||||||
! http://projecteuler.net/index.php?section=problems&id=49
 | 
					! http://projecteuler.net/index.php?section=problems&id=49
 | 
				
			||||||
| 
						 | 
					@ -25,16 +25,6 @@ IN: project-euler.049
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<PRIVATE
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
: count-digits ( n -- byte-array )
 | 
					 | 
				
			||||||
    10 <byte-array> [
 | 
					 | 
				
			||||||
        '[ 10 /mod _ [ 1 + ] change-nth dup 0 > ] loop drop
 | 
					 | 
				
			||||||
    ] keep ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
HINTS: count-digits fixnum ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
: permutations? ( n m -- ? )
 | 
					 | 
				
			||||||
    [ count-digits ] bi@ = ;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
: collect-permutations ( seq -- seq )
 | 
					: collect-permutations ( seq -- seq )
 | 
				
			||||||
    [ V{ } clone ] [ dup ] bi* [
 | 
					    [ V{ } clone ] [ dup ] bi* [
 | 
				
			||||||
        dupd '[ _ permutations? ] filter
 | 
					        dupd '[ _ permutations? ] filter
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,4 @@
 | 
				
			||||||
 | 
					USING: project-euler.070 tools.test ;
 | 
				
			||||||
 | 
					IN: project-euler.070.tests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[ 8319823 ] [ euler070 ] unit-test
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,67 @@
 | 
				
			||||||
 | 
					! Copyright (c) 2010 Aaron Schaefer. All rights reserved.
 | 
				
			||||||
 | 
					! The contents of this file are licensed under the Simplified BSD License
 | 
				
			||||||
 | 
					! A copy of the license is available at http://factorcode.org/license.txt
 | 
				
			||||||
 | 
					USING: arrays assocs combinators.short-circuit kernel math math.combinatorics
 | 
				
			||||||
 | 
					    math.functions math.primes math.ranges project-euler.common sequences ;
 | 
				
			||||||
 | 
					IN: project-euler.070
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! http://projecteuler.net/index.php?section=problems&id=70
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! DESCRIPTION
 | 
				
			||||||
 | 
					! -----------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Euler's Totient function, φ(n) [sometimes called the phi function], is used
 | 
				
			||||||
 | 
					! to determine the number of positive numbers less than or equal to n which are
 | 
				
			||||||
 | 
					! relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less
 | 
				
			||||||
 | 
					! than nine and relatively prime to nine, φ(9)=6. The number 1 is considered to
 | 
				
			||||||
 | 
					! be relatively prime to every positive number, so φ(1)=1.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation
 | 
				
			||||||
 | 
					! of 79180.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Find the value of n, 1 < n < 10^(7), for which φ(n) is a permutation of n and
 | 
				
			||||||
 | 
					! the ratio n/φ(n) produces a minimum.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! SOLUTION
 | 
				
			||||||
 | 
					! --------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! For n/φ(n) to be minimised, φ(n) must be as close to n as possible; that is,
 | 
				
			||||||
 | 
					! we want to maximise φ(n). The minimal solution for n/φ(n) would be if n was
 | 
				
			||||||
 | 
					! prime giving n/(n-1) but since n-1 never is a permutation of n it cannot be
 | 
				
			||||||
 | 
					! prime.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! The next best thing would be if n only consisted of 2 prime factors close to
 | 
				
			||||||
 | 
					! (in this case) sqrt(10000000). Hence n = p1*p2 and we only need to search
 | 
				
			||||||
 | 
					! through a list of known prime pairs. In addition:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					!     φ(p1*p2) = p1*p2*(1-1/p1)(1-1/p2) = (p1-1)(p2-1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! ...so we can compute φ(n) more efficiently.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! NOTE: ±1000 is an arbitrary range
 | 
				
			||||||
 | 
					: likely-prime-factors ( -- seq )
 | 
				
			||||||
 | 
					    7 10^ sqrt >integer 1000 [ - ] [ + ] 2bi primes-between ; inline
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: n-and-phi ( seq -- seq' )
 | 
				
			||||||
 | 
					    #! ( seq  = { p1, p2 } -- seq' = { n, φ(n) } )
 | 
				
			||||||
 | 
					    [ product ] [ [ 1 - ] map product ] bi 2array ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: fit-requirements? ( seq -- ? )
 | 
				
			||||||
 | 
					    first2 { [ drop 7 10^ < ] [ permutations? ] } 2&& ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: minimum-ratio ( seq -- n )
 | 
				
			||||||
 | 
					    [ [ first2 / ] map [ infimum ] keep index ] keep nth first ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PRIVATE>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: euler070 ( -- answer )
 | 
				
			||||||
 | 
					   likely-prime-factors 2 all-combinations [ n-and-phi ] map
 | 
				
			||||||
 | 
					   [ fit-requirements? ] filter minimum-ratio ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! [ euler070 ] 100 ave-time
 | 
				
			||||||
 | 
					! 379 ms ave run time - 1.15 SD (100 trials)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					SOLUTION: euler070
 | 
				
			||||||
| 
						 | 
					@ -1,10 +1,11 @@
 | 
				
			||||||
! Copyright (c) 2007-2010 Aaron Schaefer.
 | 
					! Copyright (c) 2007-2010 Aaron Schaefer.
 | 
				
			||||||
! See http://factorcode.org/license.txt for BSD license.
 | 
					! The contents of this file are licensed under the Simplified BSD License
 | 
				
			||||||
USING: accessors arrays kernel lists make math math.functions math.matrices
 | 
					! A copy of the license is available at http://factorcode.org/license.txt
 | 
				
			||||||
    math.primes.miller-rabin math.order math.parser math.primes.factors
 | 
					USING: accessors arrays byte-arrays fry hints kernel lists make math
 | 
				
			||||||
    math.primes.lists math.ranges math.ratios namespaces parser prettyprint
 | 
					    math.functions math.matrices math.order math.parser math.primes.factors
 | 
				
			||||||
    quotations sequences sorting strings unicode.case vocabs vocabs.parser
 | 
					    math.primes.lists math.primes.miller-rabin math.ranges math.ratios
 | 
				
			||||||
    words ;
 | 
					    namespaces parser prettyprint quotations sequences sorting strings
 | 
				
			||||||
 | 
					    unicode.case vocabs vocabs.parser words ;
 | 
				
			||||||
IN: project-euler.common
 | 
					IN: project-euler.common
 | 
				
			||||||
 | 
					
 | 
				
			||||||
! A collection of words used by more than one Project Euler solution
 | 
					! A collection of words used by more than one Project Euler solution
 | 
				
			||||||
| 
						 | 
					@ -25,6 +26,7 @@ IN: project-euler.common
 | 
				
			||||||
! pentagonal? - #44, #45
 | 
					! pentagonal? - #44, #45
 | 
				
			||||||
! penultimate - #69, #71
 | 
					! penultimate - #69, #71
 | 
				
			||||||
! propagate-all - #18, #67
 | 
					! propagate-all - #18, #67
 | 
				
			||||||
 | 
					! permutations? - #49, #70
 | 
				
			||||||
! sum-proper-divisors - #21
 | 
					! sum-proper-divisors - #21
 | 
				
			||||||
! tau* - #12
 | 
					! tau* - #12
 | 
				
			||||||
! [uad]-transform - #39, #75
 | 
					! [uad]-transform - #39, #75
 | 
				
			||||||
| 
						 | 
					@ -38,6 +40,13 @@ IN: project-euler.common
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<PRIVATE
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: count-digits ( n -- byte-array )
 | 
				
			||||||
 | 
					    10 <byte-array> [
 | 
				
			||||||
 | 
					        '[ 10 /mod _ [ 1 + ] change-nth dup 0 > ] loop drop
 | 
				
			||||||
 | 
					    ] keep ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					HINTS: count-digits fixnum ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
: max-children ( seq -- seq )
 | 
					: max-children ( seq -- seq )
 | 
				
			||||||
    [ dup length 1 - iota [ nth-pair max , ] with each ] { } make ;
 | 
					    [ dup length 1 - iota [ nth-pair max , ] with each ] { } make ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -107,6 +116,9 @@ PRIVATE>
 | 
				
			||||||
    reverse [ first dup ] [ rest ] bi
 | 
					    reverse [ first dup ] [ rest ] bi
 | 
				
			||||||
    [ propagate dup ] map nip reverse swap suffix ;
 | 
					    [ propagate dup ] map nip reverse swap suffix ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: permutations? ( n m -- ? )
 | 
				
			||||||
 | 
					    [ count-digits ] bi@ = ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
: sum-divisors ( n -- sum )
 | 
					: sum-divisors ( n -- sum )
 | 
				
			||||||
    dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
 | 
					    dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue