updating matrices section of handbook
parent
135a114787
commit
d43710eece
|
|
@ -3487,7 +3487,7 @@ Outputs a vector with the same direction, but length 1. Defined as follows:
|
|||
\vocabulary{matrices}
|
||||
\ordinaryword{cross}{cross~( v1 v2 -- vec )}
|
||||
}
|
||||
Computes the cross product $v_1\times v_2$. The following example illustrates the mathematical fact that a cross product of two vectors is always orthogonal to either vector.
|
||||
Computes the cross product $v_1\times v_2$. The following example illustrates the fact that a cross product of two vectors is always orthogonal to either vector.
|
||||
\begin{alltt}
|
||||
\textbf{ok} \tto 1 6/7 -8 \ttc \tto 8/5 3 -2 \ttc cross .
|
||||
\textbf{\tto 156/7 -54/5 -118/35 \ttc}
|
||||
|
|
@ -3532,9 +3532,9 @@ Creates a new $n\times n$ matrix where all elements on the main diagonal are 1,
|
|||
|
||||
\begin{alltt}
|
||||
\textbf{ok} 3 <identity-matrix> prettyprint
|
||||
M[ [ 1 0 0 ]
|
||||
\textbf{M[ [ 1 0 0 ]
|
||||
[ 0 1 0 ]
|
||||
[ 0 0 1 ] ]M
|
||||
[ 0 0 1 ] ]M}
|
||||
\end{alltt}
|
||||
|
||||
The following are the usual algebraic operations on matrices.
|
||||
|
|
@ -3552,19 +3552,19 @@ Multiplies each element of a matrix by a scalar.
|
|||
|
||||
\wordtable{
|
||||
\vocabulary{matrices}
|
||||
\ordinaryword{m+}{m+ ( matrix matrix -- matrix )}
|
||||
\ordinaryword{m+}{m+~( matrix matrix -- matrix )}
|
||||
}
|
||||
Adds two matrices. They must have the same dimensions.
|
||||
|
||||
\wordtable{
|
||||
\vocabulary{matrices}
|
||||
\ordinaryword{m+}{m+ ( matrix matrix -- matrix )}
|
||||
\ordinaryword{m-}{m-~( matrix matrix -- matrix )}
|
||||
}
|
||||
Subtracts two matrices. They must have the same dimensions.
|
||||
|
||||
\wordtable{
|
||||
\vocabulary{matrices}
|
||||
\ordinaryword{m*}{m* ( matrix matrix -- matrix )}
|
||||
\ordinaryword{m*}{m*~( matrix matrix -- matrix )}
|
||||
}
|
||||
Multiplies two matrices element-wise. They must have the same dimensions. This is \emph{not} matrix multiplication in the usual mathematical sense.
|
||||
|
||||
|
|
@ -3580,9 +3580,8 @@ Composes two matrices as linear operators. This is the usual mathematical matrix
|
|||
}
|
||||
Outputs a matrix where each row is a column of the original matrix, and each column is a row of the original matrix.
|
||||
\begin{alltt}
|
||||
\textbf{ok}
|
||||
\textbf{M[ [ 5 0 ]
|
||||
[ 0 5 ] ]M}
|
||||
\textbf{ok} M[ [ 1 2 ] [ 3 4 ] [ 5 6 ] ]M transpose .
|
||||
\textbf{M[ [ 1 3 5 ] [ 2 4 6 ] ]M}
|
||||
\end{alltt}
|
||||
|
||||
\subsubsection{Column and row matrices}
|
||||
|
|
|
|||
Loading…
Reference in New Issue