Merge branch 'master' of git://github.com/killy971/factor
commit
d84cfd1284
|
@ -0,0 +1,4 @@
|
|||
USING: project-euler.072 tools.test ;
|
||||
IN: project-euler.072.tests
|
||||
|
||||
[ 303963552391 ] [ euler072 ] unit-test
|
|
@ -0,0 +1,38 @@
|
|||
! Copyright (c) 2009 Guillaume Nargeot.
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: kernel math math.primes.factors math.ranges
|
||||
project-euler.common sequences ;
|
||||
IN: project-euler.072
|
||||
|
||||
! http://projecteuler.net/index.php?section=problems&id=072
|
||||
|
||||
! DESCRIPTION
|
||||
! -----------
|
||||
|
||||
! Consider the fraction, n/d, where n and d are positive integers.
|
||||
! If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
|
||||
|
||||
! If we list the set of reduced proper fractions for d ≤ 8 in ascending order
|
||||
! of size, we get:
|
||||
|
||||
! 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3,
|
||||
! 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
|
||||
|
||||
! It can be seen that there are 21 elements in this set.
|
||||
|
||||
! How many elements would be contained in the set of reduced proper fractions
|
||||
! for d ≤ 1,000,000?
|
||||
|
||||
|
||||
! SOLUTION
|
||||
! --------
|
||||
|
||||
! The answer can be found by adding totient(n) for 2 ≤ n ≤ 1e6
|
||||
|
||||
: euler072 ( -- answer )
|
||||
2 1000000 [a,b] [ totient ] [ + ] map-reduce ;
|
||||
|
||||
! [ euler072 ] 100 ave-time
|
||||
! 5274 ms ave run time - 102.7 SD (100 trials)
|
||||
|
||||
SOLUTION: euler072
|
|
@ -0,0 +1,4 @@
|
|||
USING: project-euler.074 tools.test ;
|
||||
IN: project-euler.074.tests
|
||||
|
||||
[ 402 ] [ euler074 ] unit-test
|
|
@ -0,0 +1,67 @@
|
|||
! Copyright (c) 2009 Guillaume Nargeot.
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: assocs hashtables kernel math math.ranges
|
||||
project-euler.common sequences ;
|
||||
IN: project-euler.074
|
||||
|
||||
! http://projecteuler.net/index.php?section=problems&id=074
|
||||
|
||||
! DESCRIPTION
|
||||
! -----------
|
||||
|
||||
! The number 145 is well known for the property that the sum of the factorial
|
||||
! of its digits is equal to 145:
|
||||
|
||||
! 1! + 4! + 5! = 1 + 24 + 120 = 145
|
||||
|
||||
! Perhaps less well known is 169, in that it produces the longest chain of
|
||||
! numbers that link back to 169; it turns out that there are only three such
|
||||
! loops that exist:
|
||||
|
||||
! 169 → 363601 → 1454 → 169
|
||||
! 871 → 45361 → 871
|
||||
! 872 → 45362 → 872
|
||||
|
||||
! It is not difficult to prove that EVERY starting number will eventually get
|
||||
! stuck in a loop. For example,
|
||||
|
||||
! 69 → 363600 → 1454 → 169 → 363601 (→ 1454)
|
||||
! 78 → 45360 → 871 → 45361 (→ 871)
|
||||
! 540 → 145 (→ 145)
|
||||
|
||||
! Starting with 69 produces a chain of five non-repeating terms, but the
|
||||
! longest non-repeating chain with a starting number below one million is sixty
|
||||
! terms.
|
||||
|
||||
! How many chains, with a starting number below one million, contain exactly
|
||||
! sixty non-repeating terms?
|
||||
|
||||
|
||||
! SOLUTION
|
||||
! --------
|
||||
|
||||
! Brute force
|
||||
|
||||
<PRIVATE
|
||||
|
||||
: digit-factorial ( n -- n! )
|
||||
{ 1 1 2 6 24 120 720 5040 40320 362880 } nth ;
|
||||
|
||||
: digits-factorial-sum ( n -- n )
|
||||
number>digits [ digit-factorial ] sigma ;
|
||||
|
||||
: chain-length ( n -- n )
|
||||
61 <hashtable> [ 2dup at* nip f = ] [
|
||||
2dup dupd set-at [ digits-factorial-sum ] dip
|
||||
] while nip assoc-size ;
|
||||
|
||||
PRIVATE>
|
||||
|
||||
: euler074 ( -- answer )
|
||||
1000000 [1,b] [ chain-length 60 = ] count ;
|
||||
|
||||
! [ euler074 ] 10 ave-time
|
||||
! 25134 ms ave run time - 31.96 SD (10 trials)
|
||||
|
||||
SOLUTION: euler074
|
||||
|
|
@ -19,7 +19,7 @@ IN: project-euler.085
|
|||
! SOLUTION
|
||||
! --------
|
||||
|
||||
! A grid measuring x by y contains x * (x + 1) * y * (x + 1) rectangles.
|
||||
! A grid measuring x by y contains x * (x + 1) * y * (x + 1) / 4 rectangles.
|
||||
|
||||
<PRIVATE
|
||||
|
||||
|
@ -56,6 +56,6 @@ PRIVATE>
|
|||
area-of-nearest ;
|
||||
|
||||
! [ euler085 ] 100 ave-time
|
||||
! 2285 ms ave run time - 4.8 SD (100 trials)
|
||||
! 791 ms ave run time - 17.15 SD (100 trials)
|
||||
|
||||
SOLUTION: euler085
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
USING: project-euler.124 tools.test ;
|
||||
IN: project-euler.124.tests
|
||||
|
||||
[ 21417 ] [ euler124 ] unit-test
|
|
@ -0,0 +1,63 @@
|
|||
! Copyright (c) 2009 Guillaume Nargeot.
|
||||
! See http://factorcode.org/license.txt for BSD license.
|
||||
USING: arrays kernel math.primes.factors
|
||||
math.ranges project-euler.common sequences sorting ;
|
||||
IN: project-euler.124
|
||||
|
||||
! http://projecteuler.net/index.php?section=problems&id=124
|
||||
|
||||
! DESCRIPTION
|
||||
! -----------
|
||||
|
||||
! The radical of n, rad(n), is the product of distinct prime factors of n.
|
||||
! For example, 504 = 2^3 × 3^2 × 7, so rad(504) = 2 × 3 × 7 = 42.
|
||||
|
||||
! If we calculate rad(n) for 1 ≤ n ≤ 10, then sort them on rad(n),
|
||||
! and sorting on n if the radical values are equal, we get:
|
||||
|
||||
! Unsorted Sorted
|
||||
! n rad(n) n rad(n) k
|
||||
! 1 1 1 1 1
|
||||
! 2 2 2 2 2
|
||||
! 3 3 4 2 3
|
||||
! 4 2 8 2 4
|
||||
! 5 5 3 3 5
|
||||
! 6 6 9 3 6
|
||||
! 7 7 5 5 7
|
||||
! 8 2 6 6 8
|
||||
! 9 3 7 7 9
|
||||
! 10 10 10 10 10
|
||||
|
||||
! Let E(k) be the kth element in the sorted n column; for example,
|
||||
! E(4) = 8 and E(6) = 9.
|
||||
|
||||
! If rad(n) is sorted for 1 ≤ n ≤ 100000, find E(10000).
|
||||
|
||||
|
||||
! SOLUTION
|
||||
! --------
|
||||
|
||||
<PRIVATE
|
||||
|
||||
: rad ( n -- n )
|
||||
unique-factors product ; inline
|
||||
|
||||
: rads-upto ( n -- seq )
|
||||
[0,b] [ dup rad 2array ] map ;
|
||||
|
||||
: (euler124) ( -- seq )
|
||||
100000 rads-upto sort-values ;
|
||||
|
||||
PRIVATE>
|
||||
|
||||
: euler124 ( -- answer )
|
||||
10000 (euler124) nth first ;
|
||||
|
||||
! [ euler124 ] 100 ave-time
|
||||
! 373 ms ave run time - 17.61 SD (100 trials)
|
||||
|
||||
! TODO: instead of the brute-force method, making the rad
|
||||
! array in the way of the sieve of eratosthene would scale
|
||||
! better on bigger values.
|
||||
|
||||
SOLUTION: euler124
|
|
@ -17,13 +17,14 @@ USING: definitions io io.files io.pathnames kernel math math.parser
|
|||
project-euler.049 project-euler.052 project-euler.053 project-euler.054
|
||||
project-euler.055 project-euler.056 project-euler.057 project-euler.058
|
||||
project-euler.059 project-euler.063 project-euler.067 project-euler.069
|
||||
project-euler.071 project-euler.073 project-euler.075 project-euler.076
|
||||
project-euler.079 project-euler.085 project-euler.092 project-euler.097
|
||||
project-euler.099 project-euler.100 project-euler.102 project-euler.112
|
||||
project-euler.116 project-euler.117 project-euler.134 project-euler.148
|
||||
project-euler.150 project-euler.151 project-euler.164 project-euler.169
|
||||
project-euler.173 project-euler.175 project-euler.186 project-euler.190
|
||||
project-euler.203 project-euler.215 ;
|
||||
project-euler.071 project-euler.072 project-euler.073 project-euler.074
|
||||
project-euler.075 project-euler.076 project-euler.079 project-euler.085
|
||||
project-euler.092 project-euler.097 project-euler.099 project-euler.100
|
||||
project-euler.102 project-euler.112 project-euler.116 project-euler.117
|
||||
project-euler.124 project-euler.134 project-euler.148 project-euler.150
|
||||
project-euler.151 project-euler.164 project-euler.169 project-euler.173
|
||||
project-euler.175 project-euler.186 project-euler.190 project-euler.203
|
||||
project-euler.215 ;
|
||||
IN: project-euler
|
||||
|
||||
<PRIVATE
|
||||
|
|
Loading…
Reference in New Issue