Merge branch 'master' of git://github.com/killy971/factor
						commit
						d84cfd1284
					
				| 
						 | 
					@ -0,0 +1,4 @@
 | 
				
			||||||
 | 
					USING: project-euler.072 tools.test ;
 | 
				
			||||||
 | 
					IN: project-euler.072.tests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[ 303963552391 ] [ euler072 ] unit-test
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,38 @@
 | 
				
			||||||
 | 
					! Copyright (c) 2009 Guillaume Nargeot.
 | 
				
			||||||
 | 
					! See http://factorcode.org/license.txt for BSD license.
 | 
				
			||||||
 | 
					USING: kernel math math.primes.factors math.ranges
 | 
				
			||||||
 | 
					project-euler.common sequences ;
 | 
				
			||||||
 | 
					IN: project-euler.072
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! http://projecteuler.net/index.php?section=problems&id=072
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! DESCRIPTION
 | 
				
			||||||
 | 
					! -----------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Consider the fraction, n/d, where n and d are positive integers.
 | 
				
			||||||
 | 
					! If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! If we list the set of reduced proper fractions for d ≤ 8 in ascending order
 | 
				
			||||||
 | 
					! of size, we get:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3,
 | 
				
			||||||
 | 
					! 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! It can be seen that there are 21 elements in this set.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! How many elements would be contained in the set of reduced proper fractions
 | 
				
			||||||
 | 
					! for d ≤ 1,000,000?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! SOLUTION
 | 
				
			||||||
 | 
					! --------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! The answer can be found by adding totient(n) for 2 ≤ n ≤ 1e6
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: euler072 ( -- answer )
 | 
				
			||||||
 | 
					    2 1000000 [a,b] [ totient ] [ + ] map-reduce ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! [ euler072 ] 100 ave-time
 | 
				
			||||||
 | 
					! 5274 ms ave run time - 102.7 SD (100 trials)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					SOLUTION: euler072
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,4 @@
 | 
				
			||||||
 | 
					USING: project-euler.074 tools.test ;
 | 
				
			||||||
 | 
					IN: project-euler.074.tests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[ 402 ] [ euler074 ] unit-test
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,67 @@
 | 
				
			||||||
 | 
					! Copyright (c) 2009 Guillaume Nargeot.
 | 
				
			||||||
 | 
					! See http://factorcode.org/license.txt for BSD license.
 | 
				
			||||||
 | 
					USING: assocs hashtables kernel math math.ranges
 | 
				
			||||||
 | 
					project-euler.common sequences ;
 | 
				
			||||||
 | 
					IN: project-euler.074
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! http://projecteuler.net/index.php?section=problems&id=074
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! DESCRIPTION
 | 
				
			||||||
 | 
					! -----------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! The number 145 is well known for the property that the sum of the factorial
 | 
				
			||||||
 | 
					! of its digits is equal to 145:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! 1! + 4! + 5! = 1 + 24 + 120 = 145
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Perhaps less well known is 169, in that it produces the longest chain of
 | 
				
			||||||
 | 
					! numbers that link back to 169; it turns out that there are only three such
 | 
				
			||||||
 | 
					! loops that exist:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! 169 → 363601 → 1454 → 169
 | 
				
			||||||
 | 
					! 871 → 45361 → 871
 | 
				
			||||||
 | 
					! 872 → 45362 → 872
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! It is not difficult to prove that EVERY starting number will eventually get
 | 
				
			||||||
 | 
					! stuck in a loop. For example,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! 69 → 363600 → 1454 → 169 → 363601 (→ 1454)
 | 
				
			||||||
 | 
					! 78 → 45360 → 871 → 45361 (→ 871)
 | 
				
			||||||
 | 
					! 540 → 145 (→ 145)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Starting with 69 produces a chain of five non-repeating terms, but the
 | 
				
			||||||
 | 
					! longest non-repeating chain with a starting number below one million is sixty
 | 
				
			||||||
 | 
					! terms.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! How many chains, with a starting number below one million, contain exactly
 | 
				
			||||||
 | 
					! sixty non-repeating terms?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! SOLUTION
 | 
				
			||||||
 | 
					! --------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Brute force
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: digit-factorial ( n -- n! )
 | 
				
			||||||
 | 
					    { 1 1 2 6 24 120 720 5040 40320 362880 } nth ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: digits-factorial-sum ( n -- n )
 | 
				
			||||||
 | 
					    number>digits [ digit-factorial ] sigma ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: chain-length ( n -- n )
 | 
				
			||||||
 | 
					    61 <hashtable> [ 2dup at* nip f = ] [
 | 
				
			||||||
 | 
					        2dup dupd set-at [ digits-factorial-sum ] dip
 | 
				
			||||||
 | 
					    ] while nip assoc-size ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PRIVATE>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: euler074 ( -- answer )
 | 
				
			||||||
 | 
					    1000000 [1,b] [ chain-length 60 = ] count ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! [ euler074 ] 10 ave-time
 | 
				
			||||||
 | 
					! 25134 ms ave run time - 31.96 SD (10 trials)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					SOLUTION: euler074
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -19,7 +19,7 @@ IN: project-euler.085
 | 
				
			||||||
! SOLUTION
 | 
					! SOLUTION
 | 
				
			||||||
! --------
 | 
					! --------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
! A grid measuring x by y contains x * (x + 1) * y * (x + 1) rectangles.
 | 
					! A grid measuring x by y contains x * (x + 1) * y * (x + 1) / 4 rectangles.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<PRIVATE
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -56,6 +56,6 @@ PRIVATE>
 | 
				
			||||||
    area-of-nearest ;
 | 
					    area-of-nearest ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
! [ euler085 ] 100 ave-time
 | 
					! [ euler085 ] 100 ave-time
 | 
				
			||||||
! 2285 ms ave run time - 4.8 SD (100 trials)
 | 
					! 791 ms ave run time - 17.15 SD (100 trials)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
SOLUTION: euler085
 | 
					SOLUTION: euler085
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,4 @@
 | 
				
			||||||
 | 
					USING: project-euler.124 tools.test ;
 | 
				
			||||||
 | 
					IN: project-euler.124.tests
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[ 21417 ] [ euler124 ] unit-test
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,63 @@
 | 
				
			||||||
 | 
					! Copyright (c) 2009 Guillaume Nargeot.
 | 
				
			||||||
 | 
					! See http://factorcode.org/license.txt for BSD license.
 | 
				
			||||||
 | 
					USING: arrays kernel math.primes.factors
 | 
				
			||||||
 | 
					math.ranges project-euler.common sequences sorting ;
 | 
				
			||||||
 | 
					IN: project-euler.124
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! http://projecteuler.net/index.php?section=problems&id=124
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! DESCRIPTION
 | 
				
			||||||
 | 
					! -----------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! The radical of n, rad(n), is the product of distinct prime factors of n.
 | 
				
			||||||
 | 
					! For example, 504 = 2^3 × 3^2 × 7, so rad(504) = 2 × 3 × 7 = 42.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! If we calculate rad(n) for 1 ≤ n ≤ 10, then sort them on rad(n),
 | 
				
			||||||
 | 
					! and sorting on n if the radical values are equal, we get:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					!   Unsorted          Sorted
 | 
				
			||||||
 | 
					!   n  rad(n)       n  rad(n) k
 | 
				
			||||||
 | 
					!   1    1          1    1    1
 | 
				
			||||||
 | 
					!   2    2          2    2    2
 | 
				
			||||||
 | 
					!   3    3          4    2    3
 | 
				
			||||||
 | 
					!   4    2          8    2    4
 | 
				
			||||||
 | 
					!   5    5          3    3    5
 | 
				
			||||||
 | 
					!   6    6          9    3    6
 | 
				
			||||||
 | 
					!   7    7          5    5    7
 | 
				
			||||||
 | 
					!   8    2          6    6    8
 | 
				
			||||||
 | 
					!   9    3          7    7    9
 | 
				
			||||||
 | 
					!  10   10         10   10   10
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! Let E(k) be the kth element in the sorted n column; for example,
 | 
				
			||||||
 | 
					! E(4) = 8 and E(6) = 9.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! If rad(n) is sorted for 1 ≤ n ≤ 100000, find E(10000).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! SOLUTION
 | 
				
			||||||
 | 
					! --------
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<PRIVATE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: rad ( n -- n )
 | 
				
			||||||
 | 
					    unique-factors product ; inline
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: rads-upto ( n -- seq )
 | 
				
			||||||
 | 
					    [0,b] [ dup rad 2array ] map ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: (euler124) ( -- seq )
 | 
				
			||||||
 | 
					    100000 rads-upto sort-values ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					PRIVATE>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					: euler124 ( -- answer )
 | 
				
			||||||
 | 
					    10000 (euler124) nth first ;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! [ euler124 ] 100 ave-time
 | 
				
			||||||
 | 
					! 373 ms ave run time - 17.61 SD (100 trials)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					! TODO: instead of the brute-force method, making the rad
 | 
				
			||||||
 | 
					! array in the way of the sieve of eratosthene would scale
 | 
				
			||||||
 | 
					! better on bigger values.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					SOLUTION: euler124
 | 
				
			||||||
| 
						 | 
					@ -17,13 +17,14 @@ USING: definitions io io.files io.pathnames kernel math math.parser
 | 
				
			||||||
    project-euler.049 project-euler.052 project-euler.053 project-euler.054
 | 
					    project-euler.049 project-euler.052 project-euler.053 project-euler.054
 | 
				
			||||||
    project-euler.055 project-euler.056 project-euler.057 project-euler.058
 | 
					    project-euler.055 project-euler.056 project-euler.057 project-euler.058
 | 
				
			||||||
    project-euler.059 project-euler.063 project-euler.067 project-euler.069
 | 
					    project-euler.059 project-euler.063 project-euler.067 project-euler.069
 | 
				
			||||||
    project-euler.071 project-euler.073 project-euler.075 project-euler.076
 | 
					    project-euler.071 project-euler.072 project-euler.073 project-euler.074
 | 
				
			||||||
    project-euler.079 project-euler.085 project-euler.092 project-euler.097
 | 
					    project-euler.075 project-euler.076 project-euler.079 project-euler.085
 | 
				
			||||||
    project-euler.099 project-euler.100 project-euler.102 project-euler.112
 | 
					    project-euler.092 project-euler.097 project-euler.099 project-euler.100
 | 
				
			||||||
    project-euler.116 project-euler.117 project-euler.134 project-euler.148
 | 
					    project-euler.102 project-euler.112 project-euler.116 project-euler.117
 | 
				
			||||||
    project-euler.150 project-euler.151 project-euler.164 project-euler.169
 | 
					    project-euler.124 project-euler.134 project-euler.148 project-euler.150
 | 
				
			||||||
    project-euler.173 project-euler.175 project-euler.186 project-euler.190
 | 
					    project-euler.151 project-euler.164 project-euler.169 project-euler.173
 | 
				
			||||||
    project-euler.203 project-euler.215 ;
 | 
					    project-euler.175 project-euler.186 project-euler.190 project-euler.203
 | 
				
			||||||
 | 
					    project-euler.215 ;
 | 
				
			||||||
IN: project-euler
 | 
					IN: project-euler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<PRIVATE
 | 
					<PRIVATE
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue