split the moved inline stuff into separate header file

db4
Phil Dawes 2009-08-17 21:37:15 +01:00
parent e4f92cdbf2
commit e08a6e21cb
3 changed files with 617 additions and 610 deletions

616
vm/inlineimpls.hpp Normal file
View File

@ -0,0 +1,616 @@
namespace factor
{
// I've had to copy inline implementations here to make dependencies work. Hopefully this can be better factored
// once the rest of the reentrant changes are done. -PD
//tagged.hpp
template <typename TYPE>
struct tagged
{
cell value_;
cell value() const { return value_; }
TYPE *untagged() const { return (TYPE *)(UNTAG(value_)); }
cell type() const {
cell tag = TAG(value_);
if(tag == OBJECT_TYPE)
return untagged()->h.hi_tag();
else
return tag;
}
bool type_p(cell type_) const { return type() == type_; }
TYPE *untag_check() const {
if(TYPE::type_number != TYPE_COUNT && !type_p(TYPE::type_number))
type_error(TYPE::type_number,value_);
return untagged();
}
explicit tagged(cell tagged) : value_(tagged) {
#ifdef FACTOR_DEBUG
untag_check();
#endif
}
explicit tagged(TYPE *untagged) : value_(factor::tag(untagged)) {
#ifdef FACTOR_DEBUG
untag_check();
#endif
}
TYPE *operator->() const { return untagged(); }
cell *operator&() const { return &value_; }
const tagged<TYPE>& operator=(const TYPE *x) { value_ = tag(x); return *this; }
const tagged<TYPE>& operator=(const cell &x) { value_ = x; return *this; }
bool operator==(const tagged<TYPE> &x) { return value_ == x.value_; }
bool operator!=(const tagged<TYPE> &x) { return value_ != x.value_; }
template<typename X> tagged<X> as() { return tagged<X>(value_); }
};
template <typename TYPE> TYPE *factorvm::untag_check(cell value)
{
return tagged<TYPE>(value).untag_check();
}
template <typename TYPE> TYPE *untag_check(cell value)
{
return vm->untag_check<TYPE>(value);
}
template <typename TYPE> TYPE *factorvm::untag(cell value)
{
return tagged<TYPE>(value).untagged();
}
template <typename TYPE> TYPE *untag(cell value)
{
return vm->untag<TYPE>(value);
}
// write_barrier.hpp
inline card *factorvm::addr_to_card(cell a)
{
return (card*)(((cell)(a) >> card_bits) + cards_offset);
}
inline card *addr_to_card(cell a)
{
return vm->addr_to_card(a);
}
inline cell factorvm::card_to_addr(card *c)
{
return ((cell)c - cards_offset) << card_bits;
}
inline cell card_to_addr(card *c)
{
return vm->card_to_addr(c);
}
inline cell factorvm::card_offset(card *c)
{
return *(c - (cell)data->cards + (cell)data->allot_markers);
}
inline cell card_offset(card *c)
{
return vm->card_offset(c);
}
inline card_deck *factorvm::addr_to_deck(cell a)
{
return (card_deck *)(((cell)a >> deck_bits) + decks_offset);
}
inline card_deck *addr_to_deck(cell a)
{
return vm->addr_to_deck(a);
}
inline cell factorvm::deck_to_addr(card_deck *c)
{
return ((cell)c - decks_offset) << deck_bits;
}
inline cell deck_to_addr(card_deck *c)
{
return vm->deck_to_addr(c);
}
inline card *factorvm::deck_to_card(card_deck *d)
{
return (card *)((((cell)d - decks_offset) << (deck_bits - card_bits)) + cards_offset);
}
inline card *deck_to_card(card_deck *d)
{
return vm->deck_to_card(d);
}
inline card *factorvm::addr_to_allot_marker(object *a)
{
return (card *)(((cell)a >> card_bits) + allot_markers_offset);
}
inline card *addr_to_allot_marker(object *a)
{
return vm->addr_to_allot_marker(a);
}
/* the write barrier must be called any time we are potentially storing a
pointer from an older generation to a younger one */
inline void factorvm::write_barrier(object *obj)
{
*addr_to_card((cell)obj) = card_mark_mask;
*addr_to_deck((cell)obj) = card_mark_mask;
}
inline void write_barrier(object *obj)
{
return vm->write_barrier(obj);
}
/* we need to remember the first object allocated in the card */
inline void factorvm::allot_barrier(object *address)
{
card *ptr = addr_to_allot_marker(address);
if(*ptr == invalid_allot_marker)
*ptr = ((cell)address & addr_card_mask);
}
inline void allot_barrier(object *address)
{
return vm->allot_barrier(address);
}
//data_gc.hpp
inline bool factorvm::collecting_accumulation_gen_p()
{
return ((data->have_aging_p()
&& collecting_gen == data->aging()
&& !collecting_aging_again)
|| collecting_gen == data->tenured());
}
inline bool collecting_accumulation_gen_p()
{
return vm->collecting_accumulation_gen_p();
}
inline object *factorvm::allot_zone(zone *z, cell a)
{
cell h = z->here;
z->here = h + align8(a);
object *obj = (object *)h;
allot_barrier(obj);
return obj;
}
inline object *allot_zone(zone *z, cell a)
{
return vm->allot_zone(z,a);
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
inline object *factorvm::allot_object(header header, cell size)
{
#ifdef GC_DEBUG
if(!gc_off)
gc();
#endif
object *obj;
if(nursery.size - allot_buffer_zone > size)
{
/* If there is insufficient room, collect the nursery */
if(nursery.here + allot_buffer_zone + size > nursery.end)
garbage_collection(data->nursery(),false,0);
cell h = nursery.here;
nursery.here = h + align8(size);
obj = (object *)h;
}
/* If the object is bigger than the nursery, allocate it in
tenured space */
else
{
zone *tenured = &data->generations[data->tenured()];
/* If tenured space does not have enough room, collect */
if(tenured->here + size > tenured->end)
{
gc();
tenured = &data->generations[data->tenured()];
}
/* If it still won't fit, grow the heap */
if(tenured->here + size > tenured->end)
{
garbage_collection(data->tenured(),true,size);
tenured = &data->generations[data->tenured()];
}
obj = allot_zone(tenured,size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj);
}
obj->h = header;
return obj;
}
inline object *allot_object(header header, cell size)
{
return vm->allot_object(header,size);
}
template<typename TYPE> TYPE *factorvm::allot(cell size)
{
return (TYPE *)allot_object(header(TYPE::type_number),size);
}
template<typename TYPE> TYPE *allot(cell size)
{
return vm->allot<TYPE>(size);
}
inline void factorvm::check_data_pointer(object *pointer)
{
#ifdef FACTOR_DEBUG
if(!growing_data_heap)
{
assert((cell)pointer >= data->seg->start
&& (cell)pointer < data->seg->end);
}
#endif
}
inline void check_data_pointer(object *pointer)
{
return vm->check_data_pointer(pointer);
}
inline void factorvm::check_tagged_pointer(cell tagged)
{
#ifdef FACTOR_DEBUG
if(!immediate_p(tagged))
{
object *obj = untag<object>(tagged);
check_data_pointer(obj);
obj->h.hi_tag();
}
#endif
}
inline void check_tagged_pointer(cell tagged)
{
return vm->check_tagged_pointer(tagged);
}
//local_roots.hpp
template <typename TYPE>
struct gc_root : public tagged<TYPE>
{
factorvm *myvm;
void push() { check_tagged_pointer(tagged<TYPE>::value()); myvm->gc_locals.push_back((cell)this); }
//explicit gc_root(cell value_, factorvm *vm) : myvm(vm),tagged<TYPE>(value_) { push(); }
explicit gc_root(cell value_,factorvm *vm) : tagged<TYPE>(value_),myvm(vm) { push(); }
explicit gc_root(TYPE *value_, factorvm *vm) : tagged<TYPE>(value_),myvm(vm) { push(); }
const gc_root<TYPE>& operator=(const TYPE *x) { tagged<TYPE>::operator=(x); return *this; }
const gc_root<TYPE>& operator=(const cell &x) { tagged<TYPE>::operator=(x); return *this; }
~gc_root() {
#ifdef FACTOR_DEBUG
assert(myvm->gc_locals.back() == (cell)this);
#endif
myvm->gc_locals.pop_back();
}
};
/* A similar hack for the bignum implementation */
struct gc_bignum
{
bignum **addr;
factorvm *myvm;
gc_bignum(bignum **addr_, factorvm *vm) : addr(addr_), myvm(vm) {
if(*addr_)
check_data_pointer(*addr_);
myvm->gc_bignums.push_back((cell)addr);
}
~gc_bignum() {
#ifdef FACTOR_DEBUG
assert(myvm->gc_bignums.back() == (cell)addr);
#endif
myvm->gc_bignums.pop_back();
}
};
#define GC_BIGNUM(x,vm) gc_bignum x##__gc_root(&x,vm)
//generic_arrays.hpp
template <typename TYPE> TYPE *factorvm::allot_array_internal(cell capacity)
{
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
array->capacity = tag_fixnum(capacity);
return array;
}
template <typename TYPE> TYPE *allot_array_internal(cell capacity)
{
return vm->allot_array_internal<TYPE>(capacity);
}
template <typename TYPE> bool factorvm::reallot_array_in_place_p(TYPE *array, cell capacity)
{
return in_zone(&nursery,array) && capacity <= array_capacity(array);
}
template <typename TYPE> bool reallot_array_in_place_p(TYPE *array, cell capacity)
{
return vm->reallot_array_in_place_p<TYPE>(array,capacity);
}
template <typename TYPE> TYPE *factorvm::reallot_array(TYPE *array_, cell capacity)
{
gc_root<TYPE> array(array_,this);
if(reallot_array_in_place_p(array.untagged(),capacity))
{
array->capacity = tag_fixnum(capacity);
return array.untagged();
}
else
{
cell to_copy = array_capacity(array.untagged());
if(capacity < to_copy)
to_copy = capacity;
TYPE *new_array = allot_array_internal<TYPE>(capacity);
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
0,(capacity - to_copy) * TYPE::element_size);
return new_array;
}
}
//arrays.hpp
inline void factorvm::set_array_nth(array *array, cell slot, cell value)
{
#ifdef FACTOR_DEBUG
assert(slot < array_capacity(array));
assert(array->h.hi_tag() == ARRAY_TYPE);
check_tagged_pointer(value);
#endif
array->data()[slot] = value;
write_barrier(array);
}
inline void set_array_nth(array *array, cell slot, cell value)
{
return vm->set_array_nth(array,slot,value);
}
struct growable_array {
cell count;
gc_root<array> elements;
growable_array(factorvm *myvm, cell capacity = 10) : count(0), elements(allot_array(capacity,F),myvm) {}
void add(cell elt);
void trim();
};
//byte_arrays.hpp
struct growable_byte_array {
cell count;
gc_root<byte_array> elements;
growable_byte_array(factorvm *vm,cell capacity = 40) : count(0), elements(allot_byte_array(capacity),vm) { }
void append_bytes(void *elts, cell len);
void append_byte_array(cell elts);
void trim();
};
//math.hpp
inline cell factorvm::allot_integer(fixnum x)
{
if(x < fixnum_min || x > fixnum_max)
return tag<bignum>(fixnum_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell allot_integer(fixnum x)
{
return vm->allot_integer(x);
}
inline cell factorvm::allot_cell(cell x)
{
if(x > (cell)fixnum_max)
return tag<bignum>(cell_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell allot_cell(cell x)
{
return vm->allot_cell(x);
}
inline cell factorvm::allot_float(double n)
{
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
flo->n = n;
return tag(flo);
}
inline cell allot_float(double n)
{
return vm->allot_float(n);
}
inline bignum *factorvm::float_to_bignum(cell tagged)
{
return double_to_bignum(untag_float(tagged));
}
inline bignum *float_to_bignum(cell tagged)
{
return vm->float_to_bignum(tagged);
}
inline double factorvm::bignum_to_float(cell tagged)
{
return bignum_to_double(untag<bignum>(tagged));
}
inline double bignum_to_float(cell tagged)
{
return vm->bignum_to_float(tagged);
}
inline double factorvm::untag_float(cell tagged)
{
return untag<boxed_float>(tagged)->n;
}
inline double untag_float(cell tagged)
{
return vm->untag_float(tagged);
}
inline double factorvm::untag_float_check(cell tagged)
{
return untag_check<boxed_float>(tagged)->n;
}
inline double untag_float_check(cell tagged)
{
return vm->untag_float_check(tagged);
}
inline fixnum factorvm::float_to_fixnum(cell tagged)
{
return (fixnum)untag_float(tagged);
}
inline static fixnum float_to_fixnum(cell tagged)
{
return vm->float_to_fixnum(tagged);
}
inline double factorvm::fixnum_to_float(cell tagged)
{
return (double)untag_fixnum(tagged);
}
inline double fixnum_to_float(cell tagged)
{
return vm->fixnum_to_float(tagged);
}
//callstack.hpp
/* This is a little tricky. The iterator may allocate memory, so we
keep the callstack in a GC root and use relative offsets */
template<typename TYPE> void factorvm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
gc_root<callstack> stack(stack_,vm);
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
while(frame_offset >= 0)
{
stack_frame *frame = stack->frame_at(frame_offset);
frame_offset -= frame->size;
iterator(frame,this);
}
}
template<typename TYPE> void iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
return vm->iterate_callstack_object(stack_,iterator);
}
//booleans.hpp
inline cell factorvm::tag_boolean(cell untagged)
{
return (untagged ? T : F);
}
inline cell tag_boolean(cell untagged)
{
return vm->tag_boolean(untagged);
}
// callstack.hpp
template<typename TYPE> void factorvm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
stack_frame *frame = (stack_frame *)bottom - 1;
while((cell)frame >= top)
{
iterator(frame,this);
frame = frame_successor(frame);
}
}
template<typename TYPE> void iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
return vm->iterate_callstack(top,bottom,iterator);
}
// data_heap.hpp
/* Every object has a regular representation in the runtime, which makes GC
much simpler. Every slot of the object until binary_payload_start is a pointer
to some other object. */
struct factorvm;
inline void factorvm::do_slots(cell obj, void (* iter)(cell *,factorvm*))
{
cell scan = obj;
cell payload_start = binary_payload_start((object *)obj);
cell end = obj + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan,this);
scan += sizeof(cell);
}
}
inline void do_slots(cell obj, void (* iter)(cell *,factorvm*))
{
return vm->do_slots(obj,iter);
}
}

View File

@ -68,6 +68,7 @@
#include "callstack.hpp"
#include "alien.hpp"
#include "vm.hpp"
#include "inlineimpls.hpp"
#include "jit.hpp"
#include "quotations.hpp"
#include "dispatch.hpp"

610
vm/vm.hpp
View File

@ -644,614 +644,4 @@ struct factorvm {
extern factorvm *vm;
//tagged.hpp
template <typename TYPE>
struct tagged
{
cell value_;
cell value() const { return value_; }
TYPE *untagged() const { return (TYPE *)(UNTAG(value_)); }
cell type() const {
cell tag = TAG(value_);
if(tag == OBJECT_TYPE)
return untagged()->h.hi_tag();
else
return tag;
}
bool type_p(cell type_) const { return type() == type_; }
TYPE *untag_check() const {
if(TYPE::type_number != TYPE_COUNT && !type_p(TYPE::type_number))
type_error(TYPE::type_number,value_);
return untagged();
}
explicit tagged(cell tagged) : value_(tagged) {
#ifdef FACTOR_DEBUG
untag_check();
#endif
}
explicit tagged(TYPE *untagged) : value_(factor::tag(untagged)) {
#ifdef FACTOR_DEBUG
untag_check();
#endif
}
TYPE *operator->() const { return untagged(); }
cell *operator&() const { return &value_; }
const tagged<TYPE>& operator=(const TYPE *x) { value_ = tag(x); return *this; }
const tagged<TYPE>& operator=(const cell &x) { value_ = x; return *this; }
bool operator==(const tagged<TYPE> &x) { return value_ == x.value_; }
bool operator!=(const tagged<TYPE> &x) { return value_ != x.value_; }
template<typename X> tagged<X> as() { return tagged<X>(value_); }
};
template <typename TYPE> TYPE *factorvm::untag_check(cell value)
{
return tagged<TYPE>(value).untag_check();
}
template <typename TYPE> TYPE *untag_check(cell value)
{
return vm->untag_check<TYPE>(value);
}
template <typename TYPE> TYPE *factorvm::untag(cell value)
{
return tagged<TYPE>(value).untagged();
}
template <typename TYPE> TYPE *untag(cell value)
{
return vm->untag<TYPE>(value);
}
// write_barrier.hpp
inline card *factorvm::addr_to_card(cell a)
{
return (card*)(((cell)(a) >> card_bits) + cards_offset);
}
inline card *addr_to_card(cell a)
{
return vm->addr_to_card(a);
}
inline cell factorvm::card_to_addr(card *c)
{
return ((cell)c - cards_offset) << card_bits;
}
inline cell card_to_addr(card *c)
{
return vm->card_to_addr(c);
}
inline cell factorvm::card_offset(card *c)
{
return *(c - (cell)data->cards + (cell)data->allot_markers);
}
inline cell card_offset(card *c)
{
return vm->card_offset(c);
}
inline card_deck *factorvm::addr_to_deck(cell a)
{
return (card_deck *)(((cell)a >> deck_bits) + decks_offset);
}
inline card_deck *addr_to_deck(cell a)
{
return vm->addr_to_deck(a);
}
inline cell factorvm::deck_to_addr(card_deck *c)
{
return ((cell)c - decks_offset) << deck_bits;
}
inline cell deck_to_addr(card_deck *c)
{
return vm->deck_to_addr(c);
}
inline card *factorvm::deck_to_card(card_deck *d)
{
return (card *)((((cell)d - decks_offset) << (deck_bits - card_bits)) + cards_offset);
}
inline card *deck_to_card(card_deck *d)
{
return vm->deck_to_card(d);
}
inline card *factorvm::addr_to_allot_marker(object *a)
{
return (card *)(((cell)a >> card_bits) + allot_markers_offset);
}
inline card *addr_to_allot_marker(object *a)
{
return vm->addr_to_allot_marker(a);
}
/* the write barrier must be called any time we are potentially storing a
pointer from an older generation to a younger one */
inline void factorvm::write_barrier(object *obj)
{
*addr_to_card((cell)obj) = card_mark_mask;
*addr_to_deck((cell)obj) = card_mark_mask;
}
inline void write_barrier(object *obj)
{
return vm->write_barrier(obj);
}
/* we need to remember the first object allocated in the card */
inline void factorvm::allot_barrier(object *address)
{
card *ptr = addr_to_allot_marker(address);
if(*ptr == invalid_allot_marker)
*ptr = ((cell)address & addr_card_mask);
}
inline void allot_barrier(object *address)
{
return vm->allot_barrier(address);
}
//data_gc.hpp
inline bool factorvm::collecting_accumulation_gen_p()
{
return ((data->have_aging_p()
&& collecting_gen == data->aging()
&& !collecting_aging_again)
|| collecting_gen == data->tenured());
}
inline bool collecting_accumulation_gen_p()
{
return vm->collecting_accumulation_gen_p();
}
inline object *factorvm::allot_zone(zone *z, cell a)
{
cell h = z->here;
z->here = h + align8(a);
object *obj = (object *)h;
allot_barrier(obj);
return obj;
}
inline object *allot_zone(zone *z, cell a)
{
return vm->allot_zone(z,a);
}
/*
* It is up to the caller to fill in the object's fields in a meaningful
* fashion!
*/
inline object *factorvm::allot_object(header header, cell size)
{
#ifdef GC_DEBUG
if(!gc_off)
gc();
#endif
object *obj;
if(nursery.size - allot_buffer_zone > size)
{
/* If there is insufficient room, collect the nursery */
if(nursery.here + allot_buffer_zone + size > nursery.end)
garbage_collection(data->nursery(),false,0);
cell h = nursery.here;
nursery.here = h + align8(size);
obj = (object *)h;
}
/* If the object is bigger than the nursery, allocate it in
tenured space */
else
{
zone *tenured = &data->generations[data->tenured()];
/* If tenured space does not have enough room, collect */
if(tenured->here + size > tenured->end)
{
gc();
tenured = &data->generations[data->tenured()];
}
/* If it still won't fit, grow the heap */
if(tenured->here + size > tenured->end)
{
garbage_collection(data->tenured(),true,size);
tenured = &data->generations[data->tenured()];
}
obj = allot_zone(tenured,size);
/* Allows initialization code to store old->new pointers
without hitting the write barrier in the common case of
a nursery allocation */
write_barrier(obj);
}
obj->h = header;
return obj;
}
inline object *allot_object(header header, cell size)
{
return vm->allot_object(header,size);
}
template<typename TYPE> TYPE *factorvm::allot(cell size)
{
return (TYPE *)allot_object(header(TYPE::type_number),size);
}
template<typename TYPE> TYPE *allot(cell size)
{
return vm->allot<TYPE>(size);
}
inline void factorvm::check_data_pointer(object *pointer)
{
#ifdef FACTOR_DEBUG
if(!growing_data_heap)
{
assert((cell)pointer >= data->seg->start
&& (cell)pointer < data->seg->end);
}
#endif
}
inline void check_data_pointer(object *pointer)
{
return vm->check_data_pointer(pointer);
}
inline void factorvm::check_tagged_pointer(cell tagged)
{
#ifdef FACTOR_DEBUG
if(!immediate_p(tagged))
{
object *obj = untag<object>(tagged);
check_data_pointer(obj);
obj->h.hi_tag();
}
#endif
}
inline void check_tagged_pointer(cell tagged)
{
return vm->check_tagged_pointer(tagged);
}
//local_roots.hpp
template <typename TYPE>
struct gc_root : public tagged<TYPE>
{
factorvm *myvm;
void push() { check_tagged_pointer(tagged<TYPE>::value()); myvm->gc_locals.push_back((cell)this); }
//explicit gc_root(cell value_, factorvm *vm) : myvm(vm),tagged<TYPE>(value_) { push(); }
explicit gc_root(cell value_,factorvm *vm) : tagged<TYPE>(value_),myvm(vm) { push(); }
explicit gc_root(TYPE *value_, factorvm *vm) : tagged<TYPE>(value_),myvm(vm) { push(); }
const gc_root<TYPE>& operator=(const TYPE *x) { tagged<TYPE>::operator=(x); return *this; }
const gc_root<TYPE>& operator=(const cell &x) { tagged<TYPE>::operator=(x); return *this; }
~gc_root() {
#ifdef FACTOR_DEBUG
assert(myvm->gc_locals.back() == (cell)this);
#endif
myvm->gc_locals.pop_back();
}
};
/* A similar hack for the bignum implementation */
struct gc_bignum
{
bignum **addr;
factorvm *myvm;
gc_bignum(bignum **addr_, factorvm *vm) : addr(addr_), myvm(vm) {
if(*addr_)
check_data_pointer(*addr_);
myvm->gc_bignums.push_back((cell)addr);
}
~gc_bignum() {
#ifdef FACTOR_DEBUG
assert(myvm->gc_bignums.back() == (cell)addr);
#endif
myvm->gc_bignums.pop_back();
}
};
#define GC_BIGNUM(x,vm) gc_bignum x##__gc_root(&x,vm)
//generic_arrays.hpp
template <typename TYPE> TYPE *factorvm::allot_array_internal(cell capacity)
{
TYPE *array = allot<TYPE>(array_size<TYPE>(capacity));
array->capacity = tag_fixnum(capacity);
return array;
}
template <typename TYPE> TYPE *allot_array_internal(cell capacity)
{
return vm->allot_array_internal<TYPE>(capacity);
}
template <typename TYPE> bool factorvm::reallot_array_in_place_p(TYPE *array, cell capacity)
{
return in_zone(&nursery,array) && capacity <= array_capacity(array);
}
template <typename TYPE> bool reallot_array_in_place_p(TYPE *array, cell capacity)
{
return vm->reallot_array_in_place_p<TYPE>(array,capacity);
}
template <typename TYPE> TYPE *factorvm::reallot_array(TYPE *array_, cell capacity)
{
gc_root<TYPE> array(array_,this);
if(reallot_array_in_place_p(array.untagged(),capacity))
{
array->capacity = tag_fixnum(capacity);
return array.untagged();
}
else
{
cell to_copy = array_capacity(array.untagged());
if(capacity < to_copy)
to_copy = capacity;
TYPE *new_array = allot_array_internal<TYPE>(capacity);
memcpy(new_array + 1,array.untagged() + 1,to_copy * TYPE::element_size);
memset((char *)(new_array + 1) + to_copy * TYPE::element_size,
0,(capacity - to_copy) * TYPE::element_size);
return new_array;
}
}
//arrays.hpp
inline void factorvm::set_array_nth(array *array, cell slot, cell value)
{
#ifdef FACTOR_DEBUG
assert(slot < array_capacity(array));
assert(array->h.hi_tag() == ARRAY_TYPE);
check_tagged_pointer(value);
#endif
array->data()[slot] = value;
write_barrier(array);
}
inline void set_array_nth(array *array, cell slot, cell value)
{
return vm->set_array_nth(array,slot,value);
}
struct growable_array {
cell count;
gc_root<array> elements;
growable_array(factorvm *myvm, cell capacity = 10) : count(0), elements(allot_array(capacity,F),myvm) {}
void add(cell elt);
void trim();
};
//byte_arrays.hpp
struct growable_byte_array {
cell count;
gc_root<byte_array> elements;
growable_byte_array(factorvm *vm,cell capacity = 40) : count(0), elements(allot_byte_array(capacity),vm) { }
void append_bytes(void *elts, cell len);
void append_byte_array(cell elts);
void trim();
};
//math.hpp
inline cell factorvm::allot_integer(fixnum x)
{
if(x < fixnum_min || x > fixnum_max)
return tag<bignum>(fixnum_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell allot_integer(fixnum x)
{
return vm->allot_integer(x);
}
inline cell factorvm::allot_cell(cell x)
{
if(x > (cell)fixnum_max)
return tag<bignum>(cell_to_bignum(x));
else
return tag_fixnum(x);
}
inline cell allot_cell(cell x)
{
return vm->allot_cell(x);
}
inline cell factorvm::allot_float(double n)
{
boxed_float *flo = allot<boxed_float>(sizeof(boxed_float));
flo->n = n;
return tag(flo);
}
inline cell allot_float(double n)
{
return vm->allot_float(n);
}
inline bignum *factorvm::float_to_bignum(cell tagged)
{
return double_to_bignum(untag_float(tagged));
}
inline bignum *float_to_bignum(cell tagged)
{
return vm->float_to_bignum(tagged);
}
inline double factorvm::bignum_to_float(cell tagged)
{
return bignum_to_double(untag<bignum>(tagged));
}
inline double bignum_to_float(cell tagged)
{
return vm->bignum_to_float(tagged);
}
inline double factorvm::untag_float(cell tagged)
{
return untag<boxed_float>(tagged)->n;
}
inline double untag_float(cell tagged)
{
return vm->untag_float(tagged);
}
inline double factorvm::untag_float_check(cell tagged)
{
return untag_check<boxed_float>(tagged)->n;
}
inline double untag_float_check(cell tagged)
{
return vm->untag_float_check(tagged);
}
inline fixnum factorvm::float_to_fixnum(cell tagged)
{
return (fixnum)untag_float(tagged);
}
inline static fixnum float_to_fixnum(cell tagged)
{
return vm->float_to_fixnum(tagged);
}
inline double factorvm::fixnum_to_float(cell tagged)
{
return (double)untag_fixnum(tagged);
}
inline double fixnum_to_float(cell tagged)
{
return vm->fixnum_to_float(tagged);
}
//callstack.hpp
/* This is a little tricky. The iterator may allocate memory, so we
keep the callstack in a GC root and use relative offsets */
template<typename TYPE> void factorvm::iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
gc_root<callstack> stack(stack_,vm);
fixnum frame_offset = untag_fixnum(stack->length) - sizeof(stack_frame);
while(frame_offset >= 0)
{
stack_frame *frame = stack->frame_at(frame_offset);
frame_offset -= frame->size;
iterator(frame,this);
}
}
template<typename TYPE> void iterate_callstack_object(callstack *stack_, TYPE &iterator)
{
return vm->iterate_callstack_object(stack_,iterator);
}
//booleans.hpp
inline cell factorvm::tag_boolean(cell untagged)
{
return (untagged ? T : F);
}
inline cell tag_boolean(cell untagged)
{
return vm->tag_boolean(untagged);
}
// callstack.hpp
template<typename TYPE> void factorvm::iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
stack_frame *frame = (stack_frame *)bottom - 1;
while((cell)frame >= top)
{
iterator(frame,this);
frame = frame_successor(frame);
}
}
template<typename TYPE> void iterate_callstack(cell top, cell bottom, TYPE &iterator)
{
return vm->iterate_callstack(top,bottom,iterator);
}
// data_heap.hpp
/* Every object has a regular representation in the runtime, which makes GC
much simpler. Every slot of the object until binary_payload_start is a pointer
to some other object. */
struct factorvm;
inline void factorvm::do_slots(cell obj, void (* iter)(cell *,factorvm*))
{
cell scan = obj;
cell payload_start = binary_payload_start((object *)obj);
cell end = obj + payload_start;
scan += sizeof(cell);
while(scan < end)
{
iter((cell *)scan,this);
scan += sizeof(cell);
}
}
inline void do_slots(cell obj, void (* iter)(cell *,factorvm*))
{
return vm->do_slots(obj,iter);
}
}