VM: moving collector methods to slot_visitor methods

collector::trace_cards moved to slot_visitor::visit_cards and
collector::trace_code_heap_roots moved to
slot_visitor::visit_code_heap_roots. Both those methods are pointer visitors
locals-and-roots
Björn Lindqvist 2016-05-04 00:32:17 +02:00
parent b79490b063
commit f629a95b03
5 changed files with 116 additions and 94 deletions

View File

@ -33,13 +33,15 @@ void factor_vm::collect_aging() {
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_cards(data->tenured, card_points_to_aging, 0xff); collector.visitor.visit_cards(data->tenured, card_points_to_aging, 0xff);
if (event) if (event) {
event->ended_card_scan(collector.cards_scanned, collector.decks_scanned); event->ended_card_scan(collector.visitor.cards_scanned,
collector.visitor.decks_scanned);
}
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_code_heap_roots(&code->points_to_aging); collector.visitor.visit_code_heap_roots(&code->points_to_aging);
if (event) if (event)
event->ended_code_scan(code->points_to_aging.size()); event->ended_code_scan(code->points_to_aging.size());

View File

@ -63,90 +63,15 @@ template <typename TargetGeneration, typename Policy> struct collector {
data_heap* data; data_heap* data;
TargetGeneration* target; TargetGeneration* target;
slot_visitor<gc_workhorse<TargetGeneration, Policy> > visitor; slot_visitor<gc_workhorse<TargetGeneration, Policy> > visitor;
cell cards_scanned;
cell decks_scanned;
cell scan; cell scan;
collector(factor_vm* parent, TargetGeneration* target, Policy policy) collector(factor_vm* parent, TargetGeneration* target, Policy policy)
: data(parent->data), : data(parent->data),
target(target), target(target),
visitor(parent, gc_workhorse<TargetGeneration, Policy>(parent, target, policy)), visitor(parent, gc_workhorse<TargetGeneration, Policy>(parent, target, policy)) {
cards_scanned(0),
decks_scanned(0) {
scan = target->start + target->occupied_space(); scan = target->start + target->occupied_space();
} }
void trace_code_heap_roots(std::set<code_block*>* remembered_set) {
FACTOR_FOR_EACH(*remembered_set) {
code_block* compiled = *iter;
visitor.visit_code_block_objects(compiled);
visitor.visit_embedded_literals(compiled);
compiled->flush_icache();
}
}
template <typename SourceGeneration>
cell trace_card(SourceGeneration* gen, cell index, cell start) {
cell start_addr = data->start + index * card_size;
cell end_addr = start_addr + card_size;
if (!start || (start + ((object*)start)->size()) < start_addr) {
/* Optimization because finding the objects in a memory range is
expensive. It helps a lot when tracing consecutive cards. */
cell gen_start_card = (gen->start - data->start) / card_size;
start = gen->starts
.find_object_containing_card(index - gen_start_card);
}
while (start && start < end_addr) {
visitor.visit_partial_objects(start, start_addr, end_addr);
if ((start + ((object*)start)->size()) >= end_addr) {
/* The object can overlap the card boundary, then the
remainder of it will be handled in the next card
tracing if that card is marked. */
break;
}
start = gen->next_object_after(start);
}
return start;
}
template <typename SourceGeneration>
void trace_cards(SourceGeneration* gen, card mask, card unmask) {
card_deck* decks = data->decks;
card_deck* cards = data->cards;
cell first_deck = (gen->start - data->start) / deck_size;
cell last_deck = (gen->end - data->start) / deck_size;
/* Address of last traced object. */
cell start = 0;
for (cell di = first_deck; di < last_deck; di++) {
if (decks[di] & mask) {
decks[di] &= ~unmask;
decks_scanned++;
cell first_card = cards_per_deck * di;
cell last_card = first_card + cards_per_deck;
for (cell ci = first_card; ci < last_card; ci++) {
if (cards[ci] & mask) {
cards[ci] &= ~unmask;
cards_scanned++;
start = trace_card(gen, ci, start);
if (!start) {
/* At end of generation, no need to scan more cards. */
return;
}
}
}
}
}
}
void cheneys_algorithm() { void cheneys_algorithm() {
while (scan && scan < this->target->here) { while (scan && scan < this->target->here) {
this->visitor.visit_object((object*)scan); this->visitor.visit_object((object*)scan);

View File

@ -29,16 +29,18 @@ void factor_vm::collect_nursery() {
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_cards(data->tenured, card_points_to_nursery, collector.visitor.visit_cards(data->tenured, card_points_to_nursery,
card_points_to_nursery); card_points_to_nursery);
collector.trace_cards(data->aging, card_points_to_nursery, 0xff); collector.visitor.visit_cards(data->aging, card_points_to_nursery, 0xff);
if (event) if (event) {
event->ended_card_scan(collector.cards_scanned, collector.decks_scanned); event->ended_card_scan(collector.visitor.cards_scanned,
collector.visitor.decks_scanned);
}
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_code_heap_roots(&code->points_to_nursery); collector.visitor.visit_code_heap_roots(&code->points_to_nursery);
if (event) if (event)
event->ended_code_scan(code->points_to_nursery.size()); event->ended_code_scan(code->points_to_nursery.size());

View File

@ -114,15 +114,21 @@ This is used by GC's sweep and compact phases, and the implementation of the
modify-code-heap primitive. modify-code-heap primitive.
Iteration is driven by visit_*() methods. Some of them define GC roots: Iteration is driven by visit_*() methods. Some of them define GC roots:
- visit_context_code_blocks() - visit_context_code_blocks()
- visit_callback_code_blocks() */ - visit_callback_code_blocks()
*/
template <typename Fixup> struct slot_visitor { template <typename Fixup> struct slot_visitor {
factor_vm* parent; factor_vm* parent;
Fixup fixup; Fixup fixup;
cell cards_scanned;
cell decks_scanned;
slot_visitor<Fixup>(factor_vm* parent, Fixup fixup) slot_visitor<Fixup>(factor_vm* parent, Fixup fixup)
: parent(parent), fixup(fixup) {} : parent(parent),
fixup(fixup),
cards_scanned(0),
decks_scanned(0) {}
cell visit_pointer(cell pointer); cell visit_pointer(cell pointer);
void visit_handle(cell* handle); void visit_handle(cell* handle);
@ -143,6 +149,14 @@ template <typename Fixup> struct slot_visitor {
void visit_object(object* obj); void visit_object(object* obj);
void visit_mark_stack(std::vector<cell>* mark_stack); void visit_mark_stack(std::vector<cell>* mark_stack);
void visit_instruction_operands(code_block* block, cell rel_base); void visit_instruction_operands(code_block* block, cell rel_base);
template <typename SourceGeneration>
cell visit_card(SourceGeneration* gen, cell index, cell start);
template <typename SourceGeneration>
void visit_cards(SourceGeneration* gen, card mask, card unmask);
void visit_code_heap_roots(std::set<code_block*>* remembered_set);
}; };
template <typename Fixup> template <typename Fixup>
@ -516,4 +530,81 @@ void slot_visitor<Fixup>::visit_instruction_operands(code_block* block,
block->each_instruction_operand(visit_func); block->each_instruction_operand(visit_func);
} }
template <typename Fixup>
template <typename SourceGeneration>
cell slot_visitor<Fixup>::visit_card(SourceGeneration* gen,
cell index, cell start) {
cell heap_base = parent->data->start;
cell start_addr = heap_base + index * card_size;
cell end_addr = start_addr + card_size;
/* Forward to the next object whose address is in the card. */
if (!start || (start + ((object*)start)->size()) < start_addr) {
/* Optimization because finding the objects in a memory range is
expensive. It helps a lot when tracing consecutive cards. */
cell gen_start_card = (gen->start - heap_base) / card_size;
start = gen->starts
.find_object_containing_card(index - gen_start_card);
}
while (start && start < end_addr) {
visit_partial_objects(start, start_addr, end_addr);
if ((start + ((object*)start)->size()) >= end_addr) {
/* The object can overlap the card boundary, then the
remainder of it will be handled in the next card
tracing if that card is marked. */
break;
}
start = gen->next_object_after(start);
}
return start;
}
template <typename Fixup>
template <typename SourceGeneration>
void slot_visitor<Fixup>::visit_cards(SourceGeneration* gen,
card mask, card unmask) {
card_deck* decks = parent->data->decks;
card_deck* cards = parent->data->cards;
cell heap_base = parent->data->start;
cell first_deck = (gen->start - heap_base) / deck_size;
cell last_deck = (gen->end - heap_base) / deck_size;
/* Address of last traced object. */
cell start = 0;
for (cell di = first_deck; di < last_deck; di++) {
if (decks[di] & mask) {
decks[di] &= ~unmask;
decks_scanned++;
cell first_card = cards_per_deck * di;
cell last_card = first_card + cards_per_deck;
for (cell ci = first_card; ci < last_card; ci++) {
if (cards[ci] & mask) {
cards[ci] &= ~unmask;
cards_scanned++;
start = visit_card(gen, ci, start);
if (!start) {
/* At end of generation, no need to scan more cards. */
return;
}
}
}
}
}
}
template <typename Fixup>
void slot_visitor<Fixup>::visit_code_heap_roots(std::set<code_block*>* remembered_set) {
FACTOR_FOR_EACH(*remembered_set) {
code_block* compiled = *iter;
visit_code_block_objects(compiled);
visit_embedded_literals(compiled);
compiled->flush_icache();
}
}
} }

View File

@ -5,7 +5,7 @@ namespace factor {
void factor_vm::collect_to_tenured() { void factor_vm::collect_to_tenured() {
/* Copy live objects from aging space to tenured space. */ /* Copy live objects from aging space to tenured space. */
collector<tenured_space, to_tenured_policy> collector(this, collector<tenured_space, to_tenured_policy> collector(this,
this->data->tenured, data->tenured,
to_tenured_policy(this)); to_tenured_policy(this));
mark_stack.clear(); mark_stack.clear();
@ -15,13 +15,15 @@ void factor_vm::collect_to_tenured() {
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_cards(data->tenured, card_points_to_aging, 0xff); collector.visitor.visit_cards(data->tenured, card_points_to_aging, 0xff);
if (event) if (event) {
event->ended_card_scan(collector.cards_scanned, collector.decks_scanned); event->ended_card_scan(collector.visitor.cards_scanned,
collector.visitor.decks_scanned);
}
if (event) if (event)
event->reset_timer(); event->reset_timer();
collector.trace_code_heap_roots(&code->points_to_aging); collector.visitor.visit_code_heap_roots(&code->points_to_aging);
if (event) if (event)
event->ended_code_scan(code->points_to_aging.size()); event->ended_code_scan(code->points_to_aging.size());