clang-format doesn't recognize casts to non-pointer/non-template types
so it winds up adding a space between the right paren and the expression
and then failing to recognize prefix operators in the process
(e.g. foo = (cell) & bar; should be foo = (cell)&bar;). This commit
manually fixes up the major cases (fixnum, cell, all types ending in _t).
Factor is finally a real C++ project and has a custom assert macro. Assertion failures were still getting caught as exceptions and causing failure loops. Write our own macro that calls factor::abort on failure.
* Clear faulting_p from a safepoint rather than inside general_error, because jumping into unwind-native-frames could blow up.
* Handle multiple faults from fatal_error by breakpointing. Is there anything else we can safely do at that point?
* Verify memory protection faults in the top half of the signal handlers because signal dispatch could fault. Treat memory faults during gc or fep as fatal errors.
* Add a function factor_vm::abort() that restores the default SIGABRT handler and ::abort()s. Use it from fatal_error() so we get useful context from gdb and so the user gets feedback from the system crash reporter that Factor blew up and didn't just disappear.
* In factorbug(), don't proceed with .s .r .c if it would be unsafe to do so.
* Don't pile on signals if we've already called fatal_error().
Remove the weird and broken functions fix_callstack_top and scrub_return_address. Instead, simply decrement the SP and store the PC from the front end of the signal handler so that the back end can return back into the original context normally. Currently aborts for leaf procedure frames pending a more robust solution.
- Crash if allocating error triggers a GC from a signal/SEH handler
- Crash if GC runs with floating point traps enabled on Windows
- Floating point traps didn't prettyprint properly