#include "master.hpp"

namespace factor {

code_heap::code_heap(cell size) {
  if (size > ((uint64_t)1 << (sizeof(cell) * 8 - 6)))
    fatal_error("Heap too large", size);
  seg = new segment(align_page(size), true);
  if (!seg)
    fatal_error("Out of memory in code_heap constructor", size);

  cell start = seg->start + getpagesize() + seh_area_size;

  allocator = new free_list_allocator<code_block>(seg->end - start, start);

  /* See os-windows-x86.64.cpp for seh_area usage */
  safepoint_page = (void*)seg->start;
  seh_area = (char*)seg->start + getpagesize();
}

code_heap::~code_heap() {
  delete allocator;
  allocator = NULL;
  delete seg;
  seg = NULL;
}

void code_heap::write_barrier(code_block* compiled) {
  points_to_nursery.insert(compiled);
  points_to_aging.insert(compiled);
}

void code_heap::clear_remembered_set() {
  points_to_nursery.clear();
  points_to_aging.clear();
}

bool code_heap::uninitialized_p(code_block* compiled) {
  return uninitialized_blocks.count(compiled) > 0;
}

bool code_heap::marked_p(code_block* compiled) {
  return allocator->state.marked_p(compiled);
}

void code_heap::set_marked_p(code_block* compiled) {
  allocator->state.set_marked_p(compiled);
}

void code_heap::clear_mark_bits() { allocator->state.clear_mark_bits(); }

void code_heap::free(code_block* compiled) {
  FACTOR_ASSERT(!uninitialized_p(compiled));
  points_to_nursery.erase(compiled);
  points_to_aging.erase(compiled);
  all_blocks.erase((cell)compiled);
  allocator->free(compiled);
}

void code_heap::flush_icache() { factor::flush_icache(seg->start, seg->size); }

struct clear_free_blocks_from_all_blocks_iterator {
  code_heap* code;

  clear_free_blocks_from_all_blocks_iterator(code_heap* code) : code(code) {}

  void operator()(code_block* free_block, cell size) {
    std::set<cell>::iterator erase_from =
        code->all_blocks.lower_bound((cell)free_block);
    std::set<cell>::iterator erase_to =
        code->all_blocks.lower_bound((cell)free_block + size);

    code->all_blocks.erase(erase_from, erase_to);
  }
};

void code_heap::sweep() {
  clear_free_blocks_from_all_blocks_iterator clearer(this);
  allocator->sweep(clearer);
#ifdef FACTOR_DEBUG
  verify_all_blocks_set();
#endif
}

struct all_blocks_set_verifier {
  std::set<cell>* all_blocks;

  all_blocks_set_verifier(std::set<cell>* all_blocks)
      : all_blocks(all_blocks) {}

  void operator()(code_block* block, cell size) {
    FACTOR_ASSERT(all_blocks->find((cell)block) != all_blocks->end());
  }
};

void code_heap::verify_all_blocks_set() {
  all_blocks_set_verifier verifier(&all_blocks);
  allocator->iterate(verifier);
}

code_block* code_heap::code_block_for_address(cell address) {
  std::set<cell>::const_iterator blocki = all_blocks.upper_bound(address);
  FACTOR_ASSERT(blocki != all_blocks.begin());
  --blocki;
  code_block* found_block = (code_block*)*blocki;
  FACTOR_ASSERT((cell)found_block->entry_point() <=
                address /* XXX this isn't valid during fixup. should store the
                               size in the map
                              && address - (cell)found_block->entry_point() <
                                 found_block->size()*/);
  return found_block;
}

struct all_blocks_set_inserter {
  code_heap* code;

  all_blocks_set_inserter(code_heap* code) : code(code) {}

  void operator()(code_block* block, cell size) {
    code->all_blocks.insert((cell)block);
  }
};

void code_heap::initialize_all_blocks_set() {
  all_blocks.clear();
  all_blocks_set_inserter inserter(this);
  allocator->iterate(inserter);
#ifdef FACTOR_DEBUG
  verify_all_blocks_set();
#endif
}

/* Allocate a code heap during startup */
void factor_vm::init_code_heap(cell size) { code = new code_heap(size); }

struct word_updater {
  factor_vm* parent;
  bool reset_inline_caches;

  word_updater(factor_vm* parent, bool reset_inline_caches)
      : parent(parent), reset_inline_caches(reset_inline_caches) {}

  void operator()(code_block* compiled, cell size) {
    parent->update_word_references(compiled, reset_inline_caches);
  }
};

/* Update pointers to words referenced from all code blocks.
Only needed after redefining an existing word.
If generic words were redefined, inline caches need to be reset. */
void factor_vm::update_code_heap_words(bool reset_inline_caches) {
  word_updater updater(this, reset_inline_caches);
  each_code_block(updater);
}

/* Fix up new words only.
Fast path for compilation units that only define new words. */
void factor_vm::initialize_code_blocks() {
  std::map<code_block*, cell>::const_iterator iter =
      code->uninitialized_blocks.begin();
  std::map<code_block*, cell>::const_iterator end =
      code->uninitialized_blocks.end();

  for (; iter != end; iter++)
    initialize_code_block(iter->first, iter->second);

  code->uninitialized_blocks.clear();
}

/* Allocates memory */
void factor_vm::primitive_modify_code_heap() {
  bool reset_inline_caches = to_boolean(ctx->pop());
  bool update_existing_words = to_boolean(ctx->pop());
  data_root<array> alist(ctx->pop(), this);

  cell count = array_capacity(alist.untagged());

  if (count == 0)
    return;

  for (cell i = 0; i < count; i++) {
    data_root<array> pair(array_nth(alist.untagged(), i), this);

    data_root<word> word(array_nth(pair.untagged(), 0), this);
    data_root<object> data(array_nth(pair.untagged(), 1), this);

    switch (data.type()) {
      case QUOTATION_TYPE:
        jit_compile_word(word.value(), data.value(), false);
        break;
      case ARRAY_TYPE: {
        array* compiled_data = data.as<array>().untagged();
        cell parameters = array_nth(compiled_data, 0);
        cell literals = array_nth(compiled_data, 1);
        cell relocation = array_nth(compiled_data, 2);
        cell labels = array_nth(compiled_data, 3);
        cell code = array_nth(compiled_data, 4);
        cell frame_size = untag_fixnum(array_nth(compiled_data, 5));

        code_block* compiled =
            add_code_block(code_block_optimized, code, labels, word.value(),
                           relocation, parameters, literals, frame_size);

        word->entry_point = compiled->entry_point();
      } break;
      default:
        critical_error("Expected a quotation or an array", data.value());
        break;
    }
  }

  if (update_existing_words)
    update_code_heap_words(reset_inline_caches);
  else
    initialize_code_blocks();
}

code_heap_room factor_vm::code_room() {
  code_heap_room room;

  room.size = code->allocator->size;
  room.occupied_space = code->allocator->occupied_space();
  room.total_free = code->allocator->free_space();
  room.contiguous_free = code->allocator->largest_free_block();
  room.free_block_count = code->allocator->free_block_count();

  return room;
}

/* Allocates memory */
void factor_vm::primitive_code_room() {
  code_heap_room room = code_room();
  ctx->push(tag<byte_array>(byte_array_from_value(&room)));
}

struct stack_trace_stripper {
  stack_trace_stripper() {}

  void operator()(code_block* compiled, cell size) {
    compiled->owner = false_object;
  }
};

void factor_vm::primitive_strip_stack_traces() {
  stack_trace_stripper stripper;
  each_code_block(stripper);
}

struct code_block_accumulator {
  std::vector<cell> objects;

  void operator()(code_block* compiled, cell size) {
    objects.push_back(compiled->owner);
    objects.push_back(compiled->parameters);
    objects.push_back(compiled->relocation);

    objects.push_back(tag_fixnum(compiled->type()));
    objects.push_back(tag_fixnum(compiled->size()));

    /* Note: the entry point is always a multiple of the heap
       alignment (16 bytes). We cannot allocate while iterating
       through the code heap, so it is not possible to call
       from_unsigned_cell() here. It is OK, however, to add it as
       if it were a fixnum, and have library code shift it to the
       left by 4. */
    cell entry_point = (cell)compiled->entry_point();
    FACTOR_ASSERT((entry_point & (data_alignment - 1)) == 0);
    FACTOR_ASSERT((entry_point & TAG_MASK) == FIXNUM_TYPE);
    objects.push_back(entry_point);
  }
};

/* Allocates memory */
cell factor_vm::code_blocks() {
  code_block_accumulator accum;
  each_code_block(accum);
  return std_vector_to_array(accum.objects);
}

/* Allocates memory */
void factor_vm::primitive_code_blocks() { ctx->push(code_blocks()); }

}