USING: alien byte-arrays help.markup help.syntax math math.blas.vectors sequences strings ; IN: math.blas.matrices ARTICLE: "math.blas-summary" "Basic Linear Algebra Subroutines (BLAS) interface" "Factor provides an interface to high-performance vector and matrix math routines available in implementations of the BLAS math library. A set of specialized types are provided for handling packed, unboxed vector data:" { $subsections "math.blas-types" } "Scalar-vector and vector-vector operations are available in the " { $vocab-link "math.blas.vectors" } " vocabulary:" { $subsections "math.blas.vectors" } "Vector-matrix and matrix-matrix operations are available in the " { $vocab-link "math.blas.matrices" } " vocabulary:" { $subsections "math.blas.matrices" } "The low-level BLAS Fortran interface can be accessed directly through the " { $vocab-link "math.blas.ffi" } " vocabulary. The BLAS interface can be configured to use different underlying BLAS implementations:" { $subsections "math.blas.config" } ; ARTICLE: "math.blas-types" "BLAS interface types" "BLAS vectors come in single- and double-precision, real and complex flavors:" { $subsections float-blas-vector double-blas-vector complex-float-blas-vector complex-double-blas-vector } "These vector types all follow the " { $link sequence } " protocol. In addition, there are corresponding types for matrix data:" { $subsections float-blas-matrix double-blas-matrix complex-float-blas-matrix complex-double-blas-matrix } "There are BOA constructors for all vector and matrix types, which provide the most flexibility in specifying memory layout:" { $subsections } "For the simple case of creating a dense, zero-filled vector or matrix, simple empty object constructors are provided:" { $subsections } "BLAS vectors and matrices can also be constructed from other Factor sequences:" { $subsections >float-blas-vector >double-blas-vector >complex-float-blas-vector >complex-double-blas-vector >float-blas-matrix >double-blas-matrix >complex-float-blas-matrix >complex-double-blas-matrix } ; ARTICLE: "math.blas.matrices" "BLAS interface matrix operations" "Transposing and slicing matrices:" { $subsections Mtranspose Mrows Mcols Msub } "Matrix-vector products:" { $subsections n*M.V+n*V! n*M.V+n*V n*M.V M.V } "Vector outer products:" { $subsections n*V(*)V+M! n*V(*)Vconj+M! n*V(*)V+M n*V(*)Vconj+M n*V(*)V n*V(*)Vconj V(*) V(*)conj } "Matrix products:" { $subsections n*M.M+n*M! n*M.M+n*M n*M.M M. } "Scalar-matrix products:" { $subsections n*M! n*M M*n M/n } "Literal syntax:" { $subsections POSTPONE: smatrix{ POSTPONE: dmatrix{ POSTPONE: cmatrix{ POSTPONE: zmatrix{ } ; ABOUT: "math.blas.matrices" HELP: blas-matrix-base { $class-description "The base class for all BLAS matrix types. Objects of this type should not be created directly; instead, instantiate one of the typed subclasses:" { $list { { $link float-blas-matrix } } { { $link double-blas-matrix } } { { $link complex-float-blas-matrix } } { { $link complex-double-blas-matrix } } } "All of these subclasses share the same tuple layout:" { $list { { $snippet "underlying" } " contains an alien pointer referencing or byte-array containing a packed, column-major array of float, double, float complex, or double complex values;" } { { $snippet "ld" } " indicates the distance, in elements, between matrix columns;" } { { $snippet "rows" } " and " { $snippet "cols" } " indicate the number of significant rows and columns in the matrix;" } { "and " { $snippet "transpose" } ", if set to a true value, indicates that the matrix should be treated as transposed relative to its in-memory representation." } } } ; { blas-vector-base blas-matrix-base } related-words HELP: float-blas-matrix { $class-description "A matrix of single-precision floating-point values. For details on the tuple layout, see " { $link blas-matrix-base } "." } ; HELP: double-blas-matrix { $class-description "A matrix of double-precision floating-point values. For details on the tuple layout, see " { $link blas-matrix-base } "." } ; HELP: complex-float-blas-matrix { $class-description "A matrix of single-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-matrix-base } "." } ; HELP: complex-double-blas-matrix { $class-description "A matrix of double-precision floating-point complex values. Complex values are stored in memory as two consecutive float values, real part then imaginary part. For details on the tuple layout, see " { $link blas-matrix-base } "." } ; { float-blas-matrix double-blas-matrix complex-float-blas-matrix complex-double-blas-matrix float-blas-vector double-blas-vector complex-float-blas-vector complex-double-blas-vector } related-words HELP: Mwidth { $values { "matrix" blas-matrix-base } { "width" integer } } { $description "Returns the number of columns in " { $snippet "matrix" } "." } ; HELP: Mheight { $values { "matrix" blas-matrix-base } { "height" integer } } { $description "Returns the number of rows in " { $snippet "matrix" } "." } ; { Mwidth Mheight } related-words HELP: n*M.V+n*V! { $values { "alpha" number } { "A" blas-matrix-base } { "x" blas-vector-base } { "beta" number } { "y" blas-vector-base } { "y=alpha*A.x+b*y" blas-vector-base } } { $description "Calculate the matrix-vector product " { $snippet "αAx + βy" } ", and overwrite the current contents of " { $snippet "y" } " with the result. The width of " { $snippet "A" } " must match the length of " { $snippet "x" } ", and the height must match the length of " { $snippet "y" } ". Corresponds to the xGEMV routines in BLAS." } { $side-effects "y" } ; HELP: n*V(*)V+M! { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "A" blas-matrix-base } { "A=alpha*x(*)y+A" blas-matrix-base } } { $description "Calculate the outer product " { $snippet "αx⊗y + A" } " and overwrite the current contents of A with the result. The width of " { $snippet "A" } " must match the length of " { $snippet "y" } ", and its height must match the length of " { $snippet "x" } ". Corresponds to the xGER and xGERU routines in BLAS." } { $side-effects "A" } ; HELP: n*V(*)Vconj+M! { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "A" blas-matrix-base } { "A=alpha*x(*)yconj+A" blas-matrix-base } } { $description "Calculate the conjugate outer product " { $snippet "αx⊗y̅ + A" } " and overwrite the current contents of A with the result. The width of " { $snippet "A" } " must match the length of " { $snippet "y" } ", and its height must match the length of " { $snippet "x" } ". Corresponds to the xGERC routines in BLAS." } { $side-effects "A" } ; HELP: n*M.M+n*M! { $values { "alpha" number } { "A" blas-matrix-base } { "B" blas-matrix-base } { "beta" number } { "C" blas-matrix-base } { "C=alpha*A.B+beta*C" blas-matrix-base } } { $description "Calculate the matrix product " { $snippet "αAB + βC" } " and overwrite the current contents of C with the result. The width of " { $snippet "A" } " and the height of " { $snippet "B" } " must match, as must the heights of " { $snippet "A" } " and " { $snippet "C" } ", and the widths of " { $snippet "B" } " and " { $snippet "C" } ". Corresponds to the xGEMM routines in BLAS." } { $side-effects "C" } ; HELP: { $values { "rows" integer } { "cols" integer } { "exemplar" blas-vector-base blas-matrix-base } { "matrix" blas-matrix-base } } { $description "Create a matrix of all zeros with the given dimensions and the same element type as " { $snippet "exemplar" } "." } ; { } related-words HELP: n*M.V+n*V { $values { "alpha" number } { "A" blas-matrix-base } { "x" blas-vector-base } { "beta" number } { "y" blas-vector-base } { "alpha*A.x+b*y" blas-vector-base } } { $description "Calculate the matrix-vector product " { $snippet "αAx + βy" } " and return a freshly allocated vector containing the result. The width of " { $snippet "A" } " must match the length of " { $snippet "x" } ", and the height must match the length of " { $snippet "y" } ". The returned vector will have the same length as " { $snippet "y" } ". Corresponds to the xGEMV routines in BLAS." } ; HELP: n*V(*)V+M { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "A" blas-matrix-base } { "alpha*x(*)y+A" blas-matrix-base } } { $description "Calculate the outer product " { $snippet "αx⊗y + A" } " and return a freshly allocated matrix containing the result. The width of " { $snippet "A" } " must match the length of " { $snippet "y" } ", and its height must match the length of " { $snippet "x" } ". The returned matrix will have the same dimensions as " { $snippet "A" } ". Corresponds to the xGER and xGERU routines in BLAS." } ; HELP: n*V(*)Vconj+M { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "A" blas-matrix-base } { "alpha*x(*)yconj+A" blas-matrix-base } } { $description "Calculate the conjugate outer product " { $snippet "αx⊗y̅ + A" } " and return a freshly allocated matrix containing the result. The width of " { $snippet "A" } " must match the length of " { $snippet "y" } ", and its height must match the length of " { $snippet "x" } ". The returned matrix will have the same dimensions as " { $snippet "A" } ". Corresponds to the xGERC routines in BLAS." } ; HELP: n*M.M+n*M { $values { "alpha" number } { "A" blas-matrix-base } { "B" blas-matrix-base } { "beta" number } { "C" blas-matrix-base } { "alpha*A.B+beta*C" blas-matrix-base } } { $description "Calculate the matrix product " { $snippet "αAB + βC" } " and overwrite the current contents of C with the result. The width of " { $snippet "A" } " and the height of " { $snippet "B" } " must match, as must the heights of " { $snippet "A" } " and " { $snippet "C" } ", and the widths of " { $snippet "B" } " and " { $snippet "C" } ". Corresponds to the xGEMM routines in BLAS." } ; HELP: n*M.V { $values { "alpha" number } { "A" blas-matrix-base } { "x" blas-vector-base } { "alpha*A.x" blas-vector-base } } { $description "Calculate the matrix-vector product " { $snippet "αAx" } " and return a freshly allocated vector containing the result. The width of " { $snippet "A" } " must match the length of " { $snippet "x" } ". The length of the returned vector will match the height of " { $snippet "A" } ". Corresponds to the xGEMV routines in BLAS." } ; HELP: M.V { $values { "A" blas-matrix-base } { "x" blas-vector-base } { "A.x" blas-vector-base } } { $description "Calculate the matrix-vector product " { $snippet "Ax" } " and return a freshly allocated vector containing the result. The width of " { $snippet "A" } " must match the length of " { $snippet "x" } ". The length of the returned vector will match the height of " { $snippet "A" } ". Corresponds to the xGEMV routines in BLAS." } ; { n*M.V+n*V! n*M.V+n*V n*M.V M.V } related-words HELP: n*V(*)V { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "alpha*x(*)y" blas-matrix-base } } { $description "Calculate the outer product " { $snippet "αx⊗y" } " and return a freshly allocated matrix containing the result. The returned matrix's height will match the length of " { $snippet "x" } ", and its width will match the length of " { $snippet "y" } ". Corresponds to the xGER and xGERU routines in BLAS." } ; HELP: n*V(*)Vconj { $values { "alpha" number } { "x" blas-vector-base } { "y" blas-vector-base } { "alpha*x(*)yconj" blas-matrix-base } } { $description "Calculate the outer product " { $snippet "αx⊗y̅" } " and return a freshly allocated matrix containing the result. The returned matrix's height will match the length of " { $snippet "x" } ", and its width will match the length of " { $snippet "y" } ". Corresponds to the xGERC routines in BLAS." } ; HELP: V(*) { $values { "x" blas-vector-base } { "y" blas-vector-base } { "x(*)y" blas-matrix-base } } { $description "Calculate the outer product " { $snippet "x⊗y" } " and return a freshly allocated matrix containing the result. The returned matrix's height will match the length of " { $snippet "x" } ", and its width will match the length of " { $snippet "y" } ". Corresponds to the xGER and xGERU routines in BLAS." } ; HELP: V(*)conj { $values { "x" blas-vector-base } { "y" blas-vector-base } { "x(*)yconj" blas-matrix-base } } { $description "Calculate the conjugate outer product " { $snippet "x⊗y̅" } " and return a freshly allocated matrix containing the result. The returned matrix's height will match the length of " { $snippet "x" } ", and its width will match the length of " { $snippet "y" } ". Corresponds to the xGERC routines in BLAS." } ; { n*V(*)V+M! n*V(*)Vconj+M! n*V(*)V+M n*V(*)Vconj+M n*V(*)V n*V(*)Vconj V(*) V(*)conj V. V.conj } related-words HELP: n*M.M { $values { "alpha" number } { "A" blas-matrix-base } { "B" blas-matrix-base } { "alpha*A.B" blas-matrix-base } } { $description "Calculate the matrix product " { $snippet "αAB" } " and return a freshly allocated matrix containing the result. The width of " { $snippet "A" } " and the height of " { $snippet "B" } " must match. The returned matrix's height will be the same as " { $snippet "A" } "'s, and its width will match " { $snippet "B" } "'s. Corresponds to the xGEMM routines in BLAS." } ; HELP: M. { $values { "A" blas-matrix-base } { "B" blas-matrix-base } { "A.B" blas-matrix-base } } { $description "Calculate the matrix product " { $snippet "AB" } " and return a freshly allocated matrix containing the result. The width of " { $snippet "A" } " and the height of " { $snippet "B" } " must match. The returned matrix's height will be the same as " { $snippet "A" } "'s, and its width will match " { $snippet "B" } "'s. Corresponds to the xGEMM routines in BLAS." } ; { n*M.M+n*M! n*M.M+n*M n*M.M M. } related-words HELP: Msub { $values { "matrix" blas-matrix-base } { "row" integer } { "col" integer } { "height" integer } { "width" integer } { "sub" blas-matrix-base } } { $description "Select a rectangular submatrix of " { $snippet "matrix" } " with the given dimensions. The returned submatrix will share the parent matrix's storage." } ; HELP: Mrows { $values { "A" blas-matrix-base } { "rows" sequence } } { $description "Return a sequence of BLAS vectors representing the rows of " { $snippet "matrix" } ". Each vector will share the parent matrix's storage." } ; HELP: Mcols { $values { "A" blas-matrix-base } { "cols" sequence } } { $description "Return a sequence of BLAS vectors representing the columns of " { $snippet "matrix" } ". Each vector will share the parent matrix's storage." } ; HELP: n*M! { $values { "n" number } { "A" blas-matrix-base } { "A=n*A" blas-matrix-base } } { $description "Calculate the scalar-matrix product " { $snippet "nA" } " and overwrite the current contents of A with the result." } { $side-effects "A" } ; HELP: n*M { $values { "n" number } { "A" blas-matrix-base } { "n*A" blas-matrix-base } } { $description "Calculate the scalar-matrix product " { $snippet "nA" } " and return a freshly allocated matrix with the same dimensions as " { $snippet "A" } " containing the result." } ; HELP: M*n { $values { "A" blas-matrix-base } { "n" number } { "A*n" blas-matrix-base } } { $description "Calculate the scalar-matrix product " { $snippet "nA" } " and return a freshly allocated matrix with the same dimensions as " { $snippet "A" } " containing the result." } ; HELP: M/n { $values { "A" blas-matrix-base } { "n" number } { "A/n" blas-matrix-base } } { $description "Calculate the scalar-matrix product " { $snippet "(1/n)A" } " and return a freshly allocated matrix with the same dimensions as " { $snippet "A" } " containing the result." } ; { n*M! n*M M*n M/n } related-words HELP: Mtranspose { $values { "matrix" blas-matrix-base } { "matrix^T" blas-matrix-base } } { $description "Returns the transpose of " { $snippet "matrix" } ". The returned matrix shares storage with the original matrix." } ; HELP: element-type { $values { "v" blas-vector-base blas-matrix-base } { "type" string } } { $description "Return the C type of the elements in the given BLAS vector or matrix." } ; HELP: { $values { "length" "The length of the new vector" } { "exemplar" blas-vector-base blas-matrix-base } { "vector" blas-vector-base } } { $description "Return a vector of zeros with the given " { $snippet "length" } " and the same element type as " { $snippet "v" } "." } ; HELP: smatrix{ { $syntax """smatrix{ { 1.0 0.0 0.0 1.0 } { 0.0 1.0 0.0 2.0 } { 0.0 0.0 1.0 3.0 } { 0.0 0.0 0.0 1.0 } }""" } { $description "Construct a literal " { $link float-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ; HELP: dmatrix{ { $syntax """dmatrix{ { 1.0 0.0 0.0 1.0 } { 0.0 1.0 0.0 2.0 } { 0.0 0.0 1.0 3.0 } { 0.0 0.0 0.0 1.0 } }""" } { $description "Construct a literal " { $link double-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ; HELP: cmatrix{ { $syntax """cmatrix{ { 1.0 0.0 0.0 1.0 } { 0.0 C{ 0.0 1.0 } 0.0 2.0 } { 0.0 0.0 -1.0 3.0 } { 0.0 0.0 0.0 C{ 0.0 -1.0 } } }""" } { $description "Construct a literal " { $link complex-float-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ; HELP: zmatrix{ { $syntax """zmatrix{ { 1.0 0.0 0.0 1.0 } { 0.0 C{ 0.0 1.0 } 0.0 2.0 } { 0.0 0.0 -1.0 3.0 } { 0.0 0.0 0.0 C{ 0.0 -1.0 } } }""" } { $description "Construct a literal " { $link complex-double-blas-matrix } ". Note that although BLAS matrices are stored in column-major order, the literal is specified in row-major order." } ; { POSTPONE: smatrix{ POSTPONE: dmatrix{ POSTPONE: cmatrix{ POSTPONE: zmatrix{ } related-words