USING: arrays kernel sequences vectors math math.vectors namespaces shuffle splitting sequences.lib math.order ; IN: math.polynomials ! Polynomials are vectors with the highest powers on the right: ! { 1 1 0 1 } -> 1 + x + x^3 ! { } -> 0 : powers ( n x -- seq ) #! Output sequence has n elements, { 1 x x^2 x^3 ... } 1 [ * ] accumulate nip ; : p= ( p p -- ? ) pextend = ; : ptrim ( p -- p ) dup length 1 = [ [ zero? ] right-trim ] unless ; : 2ptrim ( p p -- p p ) [ ptrim ] bi@ ; : p+ ( p p -- p ) pextend v+ ; : p- ( p p -- p ) pextend v- ; : n*p ( n p -- n*p ) n*v ; ! convolution : pextend-conv ( p p -- p p ) #! extend to: p_m + p_n - 1 2dup [ length ] bi@ + 1- 2pad-right [ >vector ] bi@ ; : p* ( p p -- p ) #! Multiply two polynomials. 2unempty pextend-conv dup length [ over length pick pick [ * ] 2map sum ] map 2nip reverse ; : p-sq ( p -- p-sq ) dup p* ; vector dup pop* swap rest-slice ; PRIVATE> : p/mod ( a b -- / mod ) p/mod-setup [ [ (p/mod) ] times ] V{ } make reverse nip swap 2ptrim pextend ; : (pgcd) ( b a y x -- a d ) dup V{ 0 } clone p= [ drop nip ] [ tuck p/mod >r pick p* swap >r swapd p- r> r> (pgcd) ] if ; : pgcd ( p p -- p q ) swap V{ 0 } clone V{ 1 } clone 2swap (pgcd) [ >array ] bi@ ; : pdiff ( p -- p' ) #! Polynomial derivative. dup length v* { 0 } ?head drop ; : polyval ( p x -- p[x] ) #! Evaluate a polynomial. >r dup length r> powers v. ;