! Copyright (c) 2009 Guillaume Nargeot. ! See http://factorcode.org/license.txt for BSD license. USING: kernel math math.functions project-euler.common ; IN: project-euler.188 ! http://projecteuler.net/index.php?section=problems&id=188 ! DESCRIPTION ! ----------- ! The hyperexponentiation or tetration of a number a by a positive integer b, ! denoted by a↑↑b or ^(b)a, is recursively defined by: ! a↑↑1 = a, ! a↑↑(k+1) = a^(a↑↑k). ! Thus we have e.g. 3↑↑2 = 3^3 = 27, hence ! 3↑↑3 = 3^27 = 7625597484987 and ! 3↑↑4 is roughly 10^(3.6383346400240996*10^12). ! Find the last 8 digits of 1777↑↑1855. ! SOLUTION ! -------- ! Using modular exponentiation. ! http://en.wikipedia.org/wiki/Modular_exponentiation : euler188 ( -- answer ) 1777 1855 10 8 ^ hyper-exp-mod ; ! [ euler188 ] 100 ave-time ! 4 ms ave run time - 0.05 SD (100 trials) SOLUTION: euler188