namespace factor { template struct free_list_allocator { cell size; cell start; cell end; free_list free_blocks; mark_bits state; free_list_allocator(cell size, cell start); void initial_free_list(cell occupied); bool contains_p(Block* block); Block* first_block(); Block* last_block(); Block* next_block_after(Block* block); Block* next_allocated_block_after(Block* block); bool can_allot_p(cell size); Block* allot(cell size); void free(Block* block); cell occupied_space(); cell free_space(); cell largest_free_block(); cell free_block_count(); void sweep(); template void sweep(Iterator& iter); template void compact(Iterator& iter, Fixup fixup, const Block** finger); template void iterate(Iterator& iter, Fixup fixup); template void iterate(Iterator& iter); }; template free_list_allocator::free_list_allocator(cell size, cell start) : size(size), start(start), end(start + size), state(mark_bits(size, start)) { initial_free_list(0); } template void free_list_allocator::initial_free_list(cell occupied) { free_blocks.initial_free_list(start, end, occupied); } template bool free_list_allocator::contains_p(Block* block) { return ((cell)block - start) < size; } template Block* free_list_allocator::first_block() { return (Block*)start; } template Block* free_list_allocator::last_block() { return (Block*)end; } template Block* free_list_allocator::next_block_after(Block* block) { return (Block*)((cell)block + block->size()); } template Block* free_list_allocator::next_allocated_block_after(Block* block) { while (block != this->last_block() && block->free_p()) { free_heap_block* free_block = (free_heap_block*)block; block = (object*)((cell)free_block + free_block->size()); } if (block == this->last_block()) return NULL; else return block; } template bool free_list_allocator::can_allot_p(cell size) { return free_blocks.can_allot_p(size); } template Block* free_list_allocator::allot(cell size) { size = align(size, data_alignment); free_heap_block* block = free_blocks.find_free_block(size); if (block) { block = free_blocks.split_free_block(block, size); return (Block*)block; } else return NULL; } template void free_list_allocator::free(Block* block) { free_heap_block* free_block = (free_heap_block*)block; free_block->make_free(block->size()); free_blocks.add_to_free_list(free_block); } template cell free_list_allocator::free_space() { return free_blocks.free_space; } template cell free_list_allocator::occupied_space() { return size - free_blocks.free_space; } template cell free_list_allocator::largest_free_block() { return free_blocks.largest_free_block(); } template cell free_list_allocator::free_block_count() { return free_blocks.free_block_count; } template template void free_list_allocator::sweep(Iterator& iter) { free_blocks.clear_free_list(); Block* start = this->first_block(); Block* end = this->last_block(); while (start != end) { /* find next unmarked block */ start = state.next_unmarked_block_after(start); if (start != end) { /* find size */ cell size = state.unmarked_block_size(start); FACTOR_ASSERT(size > 0); free_heap_block* free_block = (free_heap_block*)start; free_block->make_free(size); free_blocks.add_to_free_list(free_block); iter(start, size); start = (Block*)((char*)start + size); } } } template struct null_sweep_iterator { void operator()(Block* free_block, cell size) {} }; template void free_list_allocator::sweep() { null_sweep_iterator none; sweep(none); } template struct heap_compactor { mark_bits* state; char* address; Iterator& iter; const Block** finger; heap_compactor(mark_bits* state, Block* address, Iterator& iter, const Block** finger) : state(state), address((char*)address), iter(iter), finger(finger) {} void operator()(Block* block, cell size) { if (this->state->marked_p(block)) { *finger = (Block*)((char*)block + size); memmove((Block*)address, block, size); iter(block, (Block*)address, size); address += size; } } }; /* The forwarding map must be computed first by calling state.compute_forwarding(). */ template template void free_list_allocator::compact(Iterator& iter, Fixup fixup, const Block** finger) { heap_compactor compactor(&state, first_block(), iter, finger); iterate(compactor, fixup); /* Now update the free list; there will be a single free block at the end */ free_blocks.initial_free_list(start, end, (cell)compactor.address - start); } /* During compaction we have to be careful and measure object sizes differently */ template template void free_list_allocator::iterate(Iterator& iter, Fixup fixup) { Block* scan = first_block(); Block* end = last_block(); while (scan != end) { cell size = fixup.size(scan); Block* next = (Block*)((cell)scan + size); if (!scan->free_p()) iter(scan, size); scan = next; } } template template void free_list_allocator::iterate(Iterator& iter) { iterate(iter, no_fixup()); } }