USING: arrays kernel math math.functions math.miller-rabin math.matrices math.order math.parser math.primes.factors math.ranges namespaces sequences sequences.lib sorting unicode.case ; IN: project-euler.common ! A collection of words used by more than one Project Euler solution ! and/or related words that could be useful for future problems. ! Problems using each public word ! ------------------------------- ! alpha-value - #22, #42 ! cartesian-product - #4, #27, #29, #32, #33, #43, #44, #56 ! collect-consecutive - #8, #11 ! log10 - #25, #134 ! max-path - #18, #67 ! nth-triangle - #12, #42 ! number>digits - #16, #20, #30, #34, #35, #38, #43, #52, #55, #56 ! palindrome? - #4, #36, #55 ! pandigital? - #32, #38 ! pentagonal? - #44, #45 ! propagate-all - #18, #67 ! sum-proper-divisors - #21 ! tau* - #12 ! [uad]-transform - #39, #75 : nth-pair ( n seq -- nth next ) over 1+ over nth >r nth r> ; : perfect-square? ( n -- ? ) dup sqrt mod zero? ; r length 1+ r> - ; : max-children ( seq -- seq ) [ dup length 1- [ over nth-pair max , ] each ] { } make nip ; ! Propagate one row into the upper one : propagate ( bottom top -- newtop ) [ over rest rot first2 max rot + ] map nip ; : shift-3rd ( seq obj obj -- seq obj obj ) rot rest -rot ; : (sum-divisors) ( n -- sum ) dup sqrt >fixnum [1,b] [ [ 2dup mod zero? [ 2dup / + , ] [ drop ] if ] each dup perfect-square? [ sqrt >fixnum neg , ] [ drop ] if ] { } make sum ; : transform ( triple matrix -- new-triple ) [ 1array ] dip m. first ; PRIVATE> : alpha-value ( str -- n ) >lower [ CHAR: a - 1+ ] sigma ; : cartesian-product ( seq1 seq2 -- seq1xseq2 ) swap [ swap [ 2array ] map-with ] map-with concat ; : collect-consecutive ( seq width -- seq ) [ 2dup count-shifts [ 2dup head shift-3rd , ] times ] { } make 2nip ; : log10 ( m -- n ) log 10 log / ; : max-path ( triangle -- n ) dup length 1 > [ 2 cut* first2 max-children [ + ] 2map suffix max-path ] [ first first ] if ; : number>digits ( n -- seq ) [ dup zero? not ] [ 10 /mod ] [ ] unfold reverse nip ; : nth-triangle ( n -- n ) dup 1+ * 2 / ; : palindrome? ( n -- ? ) number>string dup reverse = ; : pandigital? ( n -- ? ) number>string natural-sort "123456789" = ; : pentagonal? ( n -- ? ) dup 0 > [ 24 * 1+ sqrt 1+ 6 / 1 mod zero? ] [ drop f ] if ; ! Not strictly needed, but it is nice to be able to dump the triangle after the ! propagation : propagate-all ( triangle -- newtriangle ) reverse [ first dup ] keep rest [ propagate dup ] map nip reverse swap suffix ; : sum-divisors ( n -- sum ) dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ; : sum-proper-divisors ( n -- sum ) dup sum-divisors swap - ; : abundant? ( n -- ? ) dup sum-proper-divisors < ; : deficient? ( n -- ? ) dup sum-proper-divisors > ; : perfect? ( n -- ? ) dup sum-proper-divisors = ; ! The divisor function, counts the number of divisors : tau ( m -- n ) group-factors flip second 1 [ 1+ * ] reduce ; ! Optimized brute-force, is often faster than prime factorization : tau* ( m -- n ) factor-2s [ 1+ ] dip [ perfect-square? -1 0 ? ] keep dup sqrt >fixnum [1,b] [ dupd mod zero? [ [ 2 + ] dip ] when ] each drop * ; ! These transforms are for generating primitive Pythagorean triples : u-transform ( triple -- new-triple ) { { 1 2 2 } { -2 -1 -2 } { 2 2 3 } } transform ; : a-transform ( triple -- new-triple ) { { 1 2 2 } { 2 1 2 } { 2 2 3 } } transform ; : d-transform ( triple -- new-triple ) { { -1 -2 -2 } { 2 1 2 } { 2 2 3 } } transform ;