#include "master.hpp"

namespace factor {

void free_list::clear_free_list() {
  for (cell i = 0; i < free_list_count; i++)
    small_blocks[i].clear();
  large_blocks.clear();
  free_block_count = 0;
  free_space = 0;
}

void free_list::initial_free_list(cell start, cell end, cell occupied) {
  clear_free_list();
  if (occupied != end - start) {
    free_heap_block* last_block = (free_heap_block*)(start + occupied);
    last_block->make_free(end - (cell)last_block);
    add_to_free_list(last_block);
  }
}

void free_list::add_to_free_list(free_heap_block* block) {
  cell size = block->size();

  free_block_count++;
  free_space += size;

  if (size < free_list_count * data_alignment)
    small_blocks[size / data_alignment].push_back(block);
  else
    large_blocks.insert(block);
}

free_heap_block* free_list::find_free_block(cell size) {
  /* Check small free lists */
  if (size / data_alignment < free_list_count) {
    std::vector<free_heap_block*>& blocks = small_blocks[size / data_alignment];
    if (blocks.size() == 0) {
      /* Round up to a multiple of 'size' */
      cell large_block_size = ((allocation_page_size + size - 1) / size) * size;

      /* Allocate a block this big */
      free_heap_block* large_block = find_free_block(large_block_size);
      if (!large_block)
        return NULL;

      large_block = split_free_block(large_block, large_block_size);

      /* Split it up into pieces and add each piece back to the free list */
      for (cell offset = 0; offset < large_block_size; offset += size) {
        free_heap_block* small_block = large_block;
        large_block = (free_heap_block*)((cell)large_block + size);
        small_block->make_free(size);
        add_to_free_list(small_block);
      }
    }

    free_heap_block* block = blocks.back();
    blocks.pop_back();

    free_block_count--;
    free_space -= block->size();

    return block;
  } else {
    /* Check large free list */
    free_heap_block key;
    key.make_free(size);
    large_block_set::iterator iter = large_blocks.lower_bound(&key);
    large_block_set::iterator end = large_blocks.end();

    if (iter != end) {
      free_heap_block* block = *iter;
      large_blocks.erase(iter);

      free_block_count--;
      free_space -= block->size();

      return block;
    }

    return NULL;
  }
}

free_heap_block* free_list::split_free_block(free_heap_block* block,
                                             cell size) {
  if (block->size() != size) {
    /* split the block in two */
    free_heap_block* split = (free_heap_block*)((cell)block + size);
    split->make_free(block->size() - size);
    block->make_free(size);
    add_to_free_list(split);
  }

  return block;
}

bool free_list::can_allot_p(cell size) {
  return largest_free_block() >= std::max(size, allocation_page_size);
}

cell free_list::largest_free_block() {
  if (large_blocks.size()) {
    large_block_set::reverse_iterator last = large_blocks.rbegin();
    return (*last)->size();
  } else {
    for (int i = free_list_count - 1; i >= 0; i--) {
      if (small_blocks[i].size())
        return small_blocks[i].back()->size();
    }

    return 0;
  }
}

}