namespace factor { template struct free_list_allocator { cell size; cell start; cell end; free_list free_blocks; mark_bits state; explicit free_list_allocator(cell size, cell start); void initial_free_list(cell occupied); bool contains_p(Block *block); Block *first_block(); Block *last_block(); Block *next_block_after(Block *block); bool can_allot_p(cell size); Block *allot(cell size); void free(Block *block); cell occupied_space(); cell free_space(); void sweep(); template void sweep(Iterator &iter); template void compact(Iterator &iter, Sizer &sizer); template void iterate(Iterator &iter, Sizer &sizer); template void iterate(Iterator &iter); }; template free_list_allocator::free_list_allocator(cell size_, cell start_) : size(size_), start(start_), end(start_ + size_), state(mark_bits(size_,start_)) { initial_free_list(0); } template void free_list_allocator::initial_free_list(cell occupied) { free_blocks.initial_free_list(start,end,occupied); } template bool free_list_allocator::contains_p(Block *block) { return ((cell)block - start) < size; } template Block *free_list_allocator::first_block() { return (Block *)start; } template Block *free_list_allocator::last_block() { return (Block *)end; } template Block *free_list_allocator::next_block_after(Block *block) { return (Block *)((cell)block + block->size()); } template bool free_list_allocator::can_allot_p(cell size) { return free_blocks.can_allot_p(size); } template Block *free_list_allocator::allot(cell size) { size = align(size,block_granularity); free_heap_block *block = free_blocks.find_free_block(size); if(block) { block = free_blocks.split_free_block(block,size); return (Block *)block; } else return NULL; } template void free_list_allocator::free(Block *block) { free_heap_block *free_block = (free_heap_block *)block; free_block->make_free(block->size()); free_blocks.add_to_free_list(free_block); } template cell free_list_allocator::free_space() { return free_blocks.free_space; } template cell free_list_allocator::occupied_space() { return size - free_blocks.free_space; } template void free_list_allocator::sweep() { free_blocks.clear_free_list(); Block *prev = NULL; Block *scan = this->first_block(); Block *end = this->last_block(); while(scan != end) { cell size = scan->size(); if(scan->free_p()) { if(prev && prev->free_p()) { free_heap_block *free_prev = (free_heap_block *)prev; free_prev->make_free(free_prev->size() + size); } else prev = scan; } else if(this->state.marked_p(scan)) { if(prev && prev->free_p()) free_blocks.add_to_free_list((free_heap_block *)prev); prev = scan; } else { if(prev && prev->free_p()) { free_heap_block *free_prev = (free_heap_block *)prev; free_prev->make_free(free_prev->size() + size); } else { free_heap_block *free_block = (free_heap_block *)scan; free_block->make_free(size); prev = scan; } } scan = (Block *)((cell)scan + size); } if(prev && prev->free_p()) free_blocks.add_to_free_list((free_heap_block *)prev); } template template void free_list_allocator::sweep(Iterator &iter) { free_blocks.clear_free_list(); Block *prev = NULL; Block *scan = this->first_block(); Block *end = this->last_block(); while(scan != end) { cell size = scan->size(); if(scan->free_p()) { if(prev && prev->free_p()) { free_heap_block *free_prev = (free_heap_block *)prev; free_prev->make_free(free_prev->size() + size); } else prev = scan; } else if(this->state.marked_p(scan)) { if(prev && prev->free_p()) free_blocks.add_to_free_list((free_heap_block *)prev); prev = scan; iter(scan,size); } else { if(prev && prev->free_p()) { free_heap_block *free_prev = (free_heap_block *)prev; free_prev->make_free(free_prev->size() + size); } else { free_heap_block *free_block = (free_heap_block *)scan; free_block->make_free(size); prev = scan; } } scan = (Block *)((cell)scan + size); } if(prev && prev->free_p()) free_blocks.add_to_free_list((free_heap_block *)prev); } template struct heap_compactor { mark_bits *state; char *address; Iterator &iter; explicit heap_compactor(mark_bits *state_, Block *address_, Iterator &iter_) : state(state_), address((char *)address_), iter(iter_) {} void operator()(Block *block, cell size) { if(this->state->marked_p(block)) { iter(block,(Block *)address,size); address += size; } } }; /* The forwarding map must be computed first by calling state.compute_forwarding(). */ template template void free_list_allocator::compact(Iterator &iter, Sizer &sizer) { heap_compactor compactor(&state,first_block(),iter); iterate(compactor,sizer); /* Now update the free list; there will be a single free block at the end */ free_blocks.initial_free_list(start,end,(cell)compactor.address - start); } /* During compaction we have to be careful and measure object sizes differently */ template template void free_list_allocator::iterate(Iterator &iter, Sizer &sizer) { Block *scan = first_block(); Block *end = last_block(); while(scan != end) { cell size = sizer(scan); Block *next = (Block *)((cell)scan + size); if(!scan->free_p()) iter(scan,size); scan = next; } } template struct standard_sizer { cell operator()(Block *block) { return block->size(); } }; template template void free_list_allocator::iterate(Iterator &iter) { standard_sizer sizer; iterate(iter,sizer); } }