! Copyright (c) 2007 Aaron Schaefer. ! See http://factorcode.org/license.txt for BSD license. USING: combinators.lib kernel math math.functions math.ranges namespaces project-euler.common sequences sequences.lib ; IN: project-euler.021 ! http://projecteuler.net/index.php?section=problems&id=21 ! DESCRIPTION ! ----------- ! Let d(n) be defined as the sum of proper divisors of n (numbers less than n ! which divide evenly into n). ! If d(a) = b and d(b) = a, where a != b, then a and b are an amicable pair and ! each of a and b are called amicable numbers. ! For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, ! 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, ! 71 and 142; so d(284) = 220. ! Evaluate the sum of all the amicable numbers under 10000. ! SOLUTION ! -------- : amicable? ( n -- ? ) dup sum-proper-divisors { [ 2dup = not ] [ 2dup sum-proper-divisors = ] } && 2nip ; : euler021 ( -- answer ) 10000 [1,b] [ dup amicable? [ drop 0 ] unless ] sigma ; ! [ euler021 ] 100 ave-time ! 328 ms run / 10 ms GC ave time - 100 trials MAIN: euler021