#include "master.h" /* Fixnums */ F_FIXNUM to_fixnum(CELL tagged) { switch(TAG(tagged)) { case FIXNUM_TYPE: return untag_fixnum_fast(tagged); case BIGNUM_TYPE: return bignum_to_fixnum(untag_object(tagged)); default: type_error(FIXNUM_TYPE,tagged); return -1; /* can't happen */ } } CELL to_cell(CELL tagged) { return (CELL)to_fixnum(tagged); } DEFINE_PRIMITIVE(bignum_to_fixnum) { drepl(tag_fixnum(bignum_to_fixnum(untag_object(dpeek())))); } DEFINE_PRIMITIVE(float_to_fixnum) { drepl(tag_fixnum(float_to_fixnum(dpeek()))); } #define POP_FIXNUMS(x,y) \ F_FIXNUM y = untag_fixnum_fast(dpop()); \ F_FIXNUM x = untag_fixnum_fast(dpop()); /* The fixnum arithmetic operations defined in C are relatively slow. The Factor compiler has optimized assembly intrinsics for some of these operations. */ DEFINE_PRIMITIVE(fixnum_add) { POP_FIXNUMS(x,y) box_signed_cell(x + y); } DEFINE_PRIMITIVE(fixnum_add_fast) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x + y)); } DEFINE_PRIMITIVE(fixnum_subtract) { POP_FIXNUMS(x,y) box_signed_cell(x - y); } DEFINE_PRIMITIVE(fixnum_subtract_fast) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x - y)); } /* Multiply two integers, and trap overflow. Thanks to David Blaikie (The_Vulture from freenode #java) for the hint. */ DEFINE_PRIMITIVE(fixnum_multiply) { POP_FIXNUMS(x,y) if(x == 0 || y == 0) dpush(tag_fixnum(0)); else { F_FIXNUM prod = x * y; /* if this is not equal, we have overflow */ if(prod / x == y) box_signed_cell(prod); else { F_ARRAY *bx = fixnum_to_bignum(x); REGISTER_BIGNUM(bx); F_ARRAY *by = fixnum_to_bignum(y); UNREGISTER_BIGNUM(bx); dpush(tag_bignum(bignum_multiply(bx,by))); } } } DEFINE_PRIMITIVE(fixnum_multiply_fast) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x * y)); } DEFINE_PRIMITIVE(fixnum_divint) { POP_FIXNUMS(x,y) box_signed_cell(x / y); } DEFINE_PRIMITIVE(fixnum_divmod) { POP_FIXNUMS(x,y) box_signed_cell(x / y); dpush(tag_fixnum(x % y)); } DEFINE_PRIMITIVE(fixnum_mod) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x % y)); } DEFINE_PRIMITIVE(fixnum_and) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x & y)); } DEFINE_PRIMITIVE(fixnum_or) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x | y)); } DEFINE_PRIMITIVE(fixnum_xor) { POP_FIXNUMS(x,y) dpush(tag_fixnum(x ^ y)); } /* * Note the hairy overflow check. * If we're shifting right by n bits, we won't overflow as long as none of the * high WORD_SIZE-TAG_BITS-n bits are set. */ DEFINE_PRIMITIVE(fixnum_shift) { POP_FIXNUMS(x,y) if(x == 0 || y == 0) { dpush(tag_fixnum(x)); return; } else if(y < 0) { if(y <= -WORD_SIZE) dpush(x < 0 ? tag_fixnum(-1) : tag_fixnum(0)); else dpush(tag_fixnum(x >> -y)); return; } else if(y < WORD_SIZE - TAG_BITS) { F_FIXNUM mask = -(1L << (WORD_SIZE - 1 - TAG_BITS - y)); if((x > 0 && (x & mask) == 0) || (x & mask) == mask) { dpush(tag_fixnum(x << y)); return; } } dpush(tag_bignum(bignum_arithmetic_shift( fixnum_to_bignum(x),y))); } DEFINE_PRIMITIVE(fixnum_less) { POP_FIXNUMS(x,y) box_boolean(x < y); } DEFINE_PRIMITIVE(fixnum_lesseq) { POP_FIXNUMS(x,y) box_boolean(x <= y); } DEFINE_PRIMITIVE(fixnum_greater) { POP_FIXNUMS(x,y) box_boolean(x > y); } DEFINE_PRIMITIVE(fixnum_greatereq) { POP_FIXNUMS(x,y) box_boolean(x >= y); } DEFINE_PRIMITIVE(fixnum_not) { drepl(tag_fixnum(~untag_fixnum_fast(dpeek()))); } /* Bignums */ DEFINE_PRIMITIVE(fixnum_to_bignum) { drepl(tag_bignum(fixnum_to_bignum(untag_fixnum_fast(dpeek())))); } DEFINE_PRIMITIVE(float_to_bignum) { drepl(tag_bignum(float_to_bignum(dpeek()))); } #define POP_BIGNUMS(x,y) \ F_ARRAY *y = untag_object(dpop()); \ F_ARRAY *x = untag_object(dpop()); DEFINE_PRIMITIVE(bignum_eq) { POP_BIGNUMS(x,y); box_boolean(bignum_equal_p(x,y)); } DEFINE_PRIMITIVE(bignum_add) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_add(x,y))); } DEFINE_PRIMITIVE(bignum_subtract) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_subtract(x,y))); } DEFINE_PRIMITIVE(bignum_multiply) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_multiply(x,y))); } DEFINE_PRIMITIVE(bignum_divint) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_quotient(x,y))); } DEFINE_PRIMITIVE(bignum_divmod) { F_ARRAY *q, *r; POP_BIGNUMS(x,y); bignum_divide(x,y,&q,&r); dpush(tag_bignum(q)); dpush(tag_bignum(r)); } DEFINE_PRIMITIVE(bignum_mod) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_remainder(x,y))); } DEFINE_PRIMITIVE(bignum_and) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_bitwise_and(x,y))); } DEFINE_PRIMITIVE(bignum_or) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_bitwise_ior(x,y))); } DEFINE_PRIMITIVE(bignum_xor) { POP_BIGNUMS(x,y); dpush(tag_bignum(bignum_bitwise_xor(x,y))); } DEFINE_PRIMITIVE(bignum_shift) { F_FIXNUM y = to_fixnum(dpop()); F_ARRAY* x = untag_object(dpop()); dpush(tag_bignum(bignum_arithmetic_shift(x,y))); } DEFINE_PRIMITIVE(bignum_less) { POP_BIGNUMS(x,y); box_boolean(bignum_compare(x,y) == bignum_comparison_less); } DEFINE_PRIMITIVE(bignum_lesseq) { POP_BIGNUMS(x,y); box_boolean(bignum_compare(x,y) != bignum_comparison_greater); } DEFINE_PRIMITIVE(bignum_greater) { POP_BIGNUMS(x,y); box_boolean(bignum_compare(x,y) == bignum_comparison_greater); } DEFINE_PRIMITIVE(bignum_greatereq) { POP_BIGNUMS(x,y); box_boolean(bignum_compare(x,y) != bignum_comparison_less); } DEFINE_PRIMITIVE(bignum_not) { drepl(tag_bignum(bignum_bitwise_not(untag_object(dpeek())))); } DEFINE_PRIMITIVE(bignum_bitp) { F_FIXNUM bit = to_fixnum(dpop()); F_ARRAY *x = untag_object(dpop()); box_boolean(bignum_logbitp(bit,x)); } DEFINE_PRIMITIVE(bignum_log2) { drepl(tag_bignum(bignum_integer_length(untag_object(dpeek())))); } unsigned int bignum_producer(unsigned int digit) { unsigned char *ptr = alien_offset(dpeek()); return *(ptr + digit); } DEFINE_PRIMITIVE(byte_array_to_bignum) { type_check(BYTE_ARRAY_TYPE,dpeek()); CELL n_digits = array_capacity(untag_object(dpeek())); bignum_type bignum = digit_stream_to_bignum( n_digits,bignum_producer,0x100,0); drepl(tag_bignum(bignum)); } void box_signed_1(s8 n) { dpush(tag_fixnum(n)); } void box_unsigned_1(u8 n) { dpush(tag_fixnum(n)); } void box_signed_2(s16 n) { dpush(tag_fixnum(n)); } void box_unsigned_2(u16 n) { dpush(tag_fixnum(n)); } void box_signed_4(s32 n) { dpush(allot_integer(n)); } void box_unsigned_4(u32 n) { dpush(allot_cell(n)); } void box_signed_cell(F_FIXNUM integer) { dpush(allot_integer(integer)); } void box_unsigned_cell(CELL cell) { dpush(allot_cell(cell)); } void box_signed_8(s64 n) { if(n < FIXNUM_MIN || n > FIXNUM_MAX) dpush(tag_bignum(long_long_to_bignum(n))); else dpush(tag_fixnum(n)); } s64 to_signed_8(CELL obj) { switch(type_of(obj)) { case FIXNUM_TYPE: return untag_fixnum_fast(obj); case BIGNUM_TYPE: return bignum_to_long_long(untag_object(obj)); default: type_error(BIGNUM_TYPE,obj); return -1; } } void box_unsigned_8(u64 n) { if(n > FIXNUM_MAX) dpush(tag_bignum(ulong_long_to_bignum(n))); else dpush(tag_fixnum(n)); } u64 to_unsigned_8(CELL obj) { switch(type_of(obj)) { case FIXNUM_TYPE: return untag_fixnum_fast(obj); case BIGNUM_TYPE: return bignum_to_ulong_long(untag_object(obj)); default: type_error(BIGNUM_TYPE,obj); return -1; } } CELL unbox_array_size(void) { switch(type_of(dpeek())) { case FIXNUM_TYPE: { F_FIXNUM n = untag_fixnum_fast(dpeek()); if(n >= 0 && n < ARRAY_SIZE_MAX) { dpop(); return n; } break; } case BIGNUM_TYPE: { bignum_type zero = untag_object(bignum_zero); bignum_type max = ulong_to_bignum(ARRAY_SIZE_MAX); bignum_type n = untag_object(dpeek()); if(bignum_compare(n,zero) != bignum_comparison_less && bignum_compare(n,max) == bignum_comparison_less) { dpop(); return bignum_to_ulong(n); } break; } } general_error(ERROR_ARRAY_SIZE,dpop(),tag_fixnum(ARRAY_SIZE_MAX),NULL); return 0; /* can't happen */ } /* Ratios */ /* Does not reduce to lowest terms, so should only be used by math library implementation, to avoid breaking invariants. */ DEFINE_PRIMITIVE(from_fraction) { F_RATIO* ratio = allot_object(RATIO_TYPE,sizeof(F_RATIO)); ratio->denominator = dpop(); ratio->numerator = dpop(); dpush(RETAG(ratio,RATIO_TYPE)); } /* Floats */ DEFINE_PRIMITIVE(fixnum_to_float) { drepl(allot_float(fixnum_to_float(dpeek()))); } DEFINE_PRIMITIVE(bignum_to_float) { drepl(allot_float(bignum_to_float(dpeek()))); } DEFINE_PRIMITIVE(str_to_float) { char *c_str, *end; double f; F_STRING *str = untag_string(dpeek()); CELL capacity = string_capacity(str); c_str = to_char_string(str,false); end = c_str; f = strtod(c_str,&end); if(end != c_str + capacity) drepl(F); else drepl(allot_float(f)); } DEFINE_PRIMITIVE(float_to_str) { char tmp[33]; snprintf(tmp,32,"%.16g",untag_float(dpop())); tmp[32] = '\0'; box_char_string(tmp); } #define POP_FLOATS(x,y) \ double y = untag_float_fast(dpop()); \ double x = untag_float_fast(dpop()); DEFINE_PRIMITIVE(float_eq) { POP_FLOATS(x,y); box_boolean(x == y); } DEFINE_PRIMITIVE(float_add) { POP_FLOATS(x,y); box_double(x + y); } DEFINE_PRIMITIVE(float_subtract) { POP_FLOATS(x,y); box_double(x - y); } DEFINE_PRIMITIVE(float_multiply) { POP_FLOATS(x,y); box_double(x * y); } DEFINE_PRIMITIVE(float_divfloat) { POP_FLOATS(x,y); box_double(x / y); } DEFINE_PRIMITIVE(float_mod) { POP_FLOATS(x,y); box_double(fmod(x,y)); } DEFINE_PRIMITIVE(float_less) { POP_FLOATS(x,y); box_boolean(x < y); } DEFINE_PRIMITIVE(float_lesseq) { POP_FLOATS(x,y); box_boolean(x <= y); } DEFINE_PRIMITIVE(float_greater) { POP_FLOATS(x,y); box_boolean(x > y); } DEFINE_PRIMITIVE(float_greatereq) { POP_FLOATS(x,y); box_boolean(x >= y); } DEFINE_PRIMITIVE(float_bits) { box_unsigned_4(float_bits(untag_float(dpop()))); } DEFINE_PRIMITIVE(bits_float) { box_float(bits_float(to_cell(dpop()))); } DEFINE_PRIMITIVE(double_bits) { box_unsigned_8(double_bits(untag_float(dpop()))); } DEFINE_PRIMITIVE(bits_double) { box_double(bits_double(to_unsigned_8(dpop()))); } float to_float(CELL value) { return untag_float(value); } double to_double(CELL value) { return untag_float(value); } void box_float(float flo) { dpush(allot_float(flo)); } void box_double(double flo) { dpush(allot_float(flo)); } /* Complex numbers */ DEFINE_PRIMITIVE(from_rect) { F_COMPLEX* complex = allot_object(COMPLEX_TYPE,sizeof(F_COMPLEX)); complex->imaginary = dpop(); complex->real = dpop(); dpush(RETAG(complex,COMPLEX_TYPE)); }