! Copyright (C) 2004, 2007 Slava Pestov. ! See http://factorcode.org/license.txt for BSD license. USING: math kernel math.constants math.private math.libm combinators math.order ; IN: math.functions ) ( x y -- z ) dup 0 = [ drop ] [ ] if ; inline PRIVATE> : rect> ( x y -- z ) over real? over real? and [ (rect>) ] [ "Complex number must have real components" throw ] if ; inline GENERIC: sqrt ( x -- y ) foldable M: real sqrt >float dup 0.0 < [ neg fsqrt 0.0 swap rect> ] [ fsqrt ] if ; : each-bit ( n quot: ( ? -- ) -- ) over 0 = pick -1 = or [ 2drop ] [ 2dup >r >r >r odd? r> call r> 2/ r> each-bit ] if ; inline recursive : ^n ( z w -- z^w ) 1 swap [ [ dupd * ] when >r sq r> ] each-bit nip ; inline : integer^ ( x y -- z ) dup 0 > [ ^n ] [ neg ^n recip ] if ; inline : >rect ( z -- x y ) [ real-part ] [ imaginary-part ] bi ; inline : >float-rect ( z -- x y ) >rect [ >float ] bi@ ; inline : >polar ( z -- abs arg ) >float-rect [ [ sq ] bi@ + fsqrt ] [ swap fatan2 ] 2bi ; inline : cis ( arg -- z ) dup fcos swap fsin rect> ; inline : polar> ( abs arg -- z ) cis * ; inline : ^mag ( w abs arg -- magnitude ) >r >r >float-rect swap r> swap fpow r> rot * fexp /f ; inline : ^theta ( w abs arg -- theta ) >r >r >float-rect r> flog * swap r> * + ; inline : ^complex ( x y -- z ) swap >polar [ ^mag ] [ ^theta ] 3bi polar> ; inline : real^? ( x y -- ? ) 2dup [ real? ] both? [ drop 0 >= ] [ 2drop f ] if ; inline : 0^ ( x -- z ) dup zero? [ drop 0./0. ] [ 0 < 1./0. 0 ? ] if ; inline : ^ ( x y -- z ) { { [ over zero? ] [ nip 0^ ] } { [ dup integer? ] [ integer^ ] } { [ 2dup real^? ] [ fpow ] } [ ^complex ] } cond ; : (^mod) ( n x y -- z ) 1 swap [ [ dupd * pick mod ] when >r sq over mod r> ] each-bit 2nip ; inline : (gcd) ( b a x y -- a d ) over zero? [ 2nip ] [ swap [ /mod >r over * swapd - r> ] keep (gcd) ] if ; : gcd ( x y -- a d ) 0 -rot 1 -rot (gcd) dup 0 < [ neg ] when ; foldable : lcm ( a b -- c ) [ * ] 2keep gcd nip /i ; foldable : mod-inv ( x n -- y ) tuck gcd 1 = [ dup 0 < [ + ] [ nip ] if ] [ "Non-trivial divisor found" throw ] if ; foldable : ^mod ( x y n -- z ) over 0 < [ [ >r neg r> ^mod ] keep mod-inv ] [ -rot (^mod) ] if ; foldable GENERIC: absq ( x -- y ) foldable M: real absq sq ; : ~abs ( x y epsilon -- ? ) >r - abs r> < ; : ~rel ( x y epsilon -- ? ) >r [ - abs ] 2keep [ abs ] bi@ + r> * < ; : ~ ( x y epsilon -- ? ) { { [ pick fp-nan? pick fp-nan? or ] [ 3drop f ] } { [ dup zero? ] [ drop number= ] } { [ dup 0 < ] [ ~rel ] } [ ~abs ] } cond ; : conjugate ( z -- z* ) >rect neg rect> ; inline : arg ( z -- arg ) >float-rect swap fatan2 ; inline : [-1,1]? ( x -- ? ) dup complex? [ drop f ] [ abs 1 <= ] if ; inline : >=1? ( x -- ? ) dup complex? [ drop f ] [ 1 >= ] if ; inline GENERIC: exp ( x -- y ) M: real exp fexp ; M: complex exp >rect swap fexp swap polar> ; GENERIC: log ( x -- y ) M: real log dup 0.0 >= [ flog ] [ 0.0 rect> log ] if ; M: complex log >polar swap flog swap rect> ; : cos ( x -- y ) dup complex? [ >float-rect 2dup fcosh swap fcos * -rot fsinh swap fsin neg * rect> ] [ fcos ] if ; foldable : sec ( x -- y ) cos recip ; inline : cosh ( x -- y ) dup complex? [ >float-rect 2dup fcos swap fcosh * -rot fsin swap fsinh * rect> ] [ fcosh ] if ; foldable : sech ( x -- y ) cosh recip ; inline : sin ( x -- y ) dup complex? [ >float-rect 2dup fcosh swap fsin * -rot fsinh swap fcos * rect> ] [ fsin ] if ; foldable : cosec ( x -- y ) sin recip ; inline : sinh ( x -- y ) dup complex? [ >float-rect 2dup fcos swap fsinh * -rot fsin swap fcosh * rect> ] [ fsinh ] if ; foldable : cosech ( x -- y ) sinh recip ; inline : tan ( x -- y ) dup complex? [ dup sin swap cos / ] [ ftan ] if ; inline : tanh ( x -- y ) dup complex? [ dup sinh swap cosh / ] [ ftanh ] if ; inline : cot ( x -- y ) tan recip ; inline : coth ( x -- y ) tanh recip ; inline : acosh ( x -- y ) dup sq 1- sqrt + log ; inline : asech ( x -- y ) recip acosh ; inline : asinh ( x -- y ) dup sq 1+ sqrt + log ; inline : acosech ( x -- y ) recip asinh ; inline : atanh ( x -- y ) dup 1+ swap 1- neg / log 2 / ; inline : acoth ( x -- y ) recip atanh ; inline : i* ( x -- y ) >rect neg swap rect> ; : -i* ( x -- y ) >rect swap neg rect> ; : asin ( x -- y ) dup [-1,1]? [ fasin ] [ i* asinh -i* ] if ; inline : acos ( x -- y ) dup [-1,1]? [ facos ] [ asin pi 2 / swap - ] if ; inline : atan ( x -- y ) dup complex? [ i* atanh i* ] [ fatan ] if ; inline : asec ( x -- y ) recip acos ; inline : acosec ( x -- y ) recip asin ; inline : acot ( x -- y ) recip atan ; inline : truncate ( x -- y ) dup 1 mod - ; inline : round ( x -- y ) dup sgn 2 / + truncate ; inline : floor ( x -- y ) dup 1 mod dup zero? [ drop ] [ dup 0 < [ - 1- ] [ - ] if ] if ; foldable : ceiling ( x -- y ) neg floor neg ; foldable