#include "factor.h" /* FFI calls this */ void box_boolean(bool value) { dpush(value ? T : F); } /* FFI calls this */ bool unbox_boolean(void) { return (dpop() != F); } /* the array is full of undefined data, and must be correctly filled before the next GC. size is in cells */ F_ARRAY *allot_array_internal(CELL type, F_FIXNUM capacity) { F_ARRAY *array; if(capacity < 0) { general_error(ERROR_NEGATIVE_ARRAY_SIZE,allot_integer(capacity),F,true); return NULL; } else { array = allot_object(type,array_size(capacity)); array->capacity = tag_fixnum(capacity); return array; } } /* make a new array with an initial element */ F_ARRAY *allot_array(CELL type, F_FIXNUM capacity, CELL fill) { int i; REGISTER_ROOT(fill); F_ARRAY* array = allot_array_internal(type, capacity); UNREGISTER_ROOT(fill); for(i = 0; i < capacity; i++) put(AREF(array,i),fill); return array; } /* size is in bytes this time */ F_ARRAY *allot_byte_array(F_FIXNUM size) { F_FIXNUM byte_size = (size + sizeof(CELL) - 1) / sizeof(CELL); return allot_array(BYTE_ARRAY_TYPE,byte_size,0); } /* push a new array on the stack */ void primitive_array(void) { CELL initial = dpop(); F_FIXNUM size = unbox_signed_cell(); dpush(tag_object(allot_array(ARRAY_TYPE,size,initial))); } /* push a new byte on the stack */ void primitive_byte_array(void) { F_FIXNUM size = unbox_signed_cell(); dpush(tag_object(allot_byte_array(size))); } CELL allot_array_4(CELL v1, CELL v2, CELL v3, CELL v4) { REGISTER_ROOT(v1); REGISTER_ROOT(v2); REGISTER_ROOT(v3); REGISTER_ROOT(v4); F_ARRAY *a = allot_array_internal(ARRAY_TYPE,4); UNREGISTER_ROOT(v4); UNREGISTER_ROOT(v3); UNREGISTER_ROOT(v2); UNREGISTER_ROOT(v1); put(AREF(a,0),v1); put(AREF(a,1),v2); put(AREF(a,2),v3); put(AREF(a,3),v4); return tag_object(a); } F_ARRAY *reallot_array(F_ARRAY* array, F_FIXNUM capacity, CELL fill) { int i; F_ARRAY* new_array; CELL to_copy = array_capacity(array); if(capacity < to_copy) to_copy = capacity; REGISTER_ARRAY(array); REGISTER_ROOT(fill); new_array = allot_array_internal(untag_header(array->header),capacity); UNREGISTER_ROOT(fill); UNREGISTER_ARRAY(array); memcpy(new_array + 1,array + 1,to_copy * CELLS); for(i = to_copy; i < capacity; i++) put(AREF(new_array,i),fill); return new_array; } void primitive_resize_array(void) { F_ARRAY* array = untag_array(dpop()); F_FIXNUM capacity = unbox_signed_cell(); dpush(tag_object(reallot_array(array,capacity,F))); } void primitive_become(void) { CELL type = unbox_signed_cell(); CELL obj = dpeek(); put(SLOT(UNTAG(obj),0),tag_header(type)); } void primitive_array_to_vector(void) { F_VECTOR *vector = allot_object(VECTOR_TYPE,sizeof(F_VECTOR)); F_ARRAY *array = untag_array(dpeek()); vector->top = array->capacity; vector->array = tag_object(array); drepl(tag_object(vector)); } /* untagged */ F_STRING* allot_string_internal(F_FIXNUM capacity) { F_STRING* string; if(capacity < 0) { general_error(ERROR_NEGATIVE_ARRAY_SIZE,allot_integer(capacity),F,true); return NULL; } else { string = allot_object(STRING_TYPE, sizeof(F_STRING) + (capacity + 1) * CHARS); /* strings are null-terminated in memory, even though they also have a length field. The null termination allows us to add the sizeof(F_STRING) to a Factor string to get a C-style UTF16 string for C library calls. */ cput(SREF(string,capacity),(u16)'\0'); string->length = tag_fixnum(capacity); string->hashcode = F; return string; } } /* call this after constructing a string */ void rehash_string(F_STRING* str) { s32 hash = 0; CELL i; CELL capacity = string_capacity(str); for(i = 0; i < capacity; i++) hash = (31*hash + string_nth(str,i)); str->hashcode = (s32)tag_fixnum(hash); } void primitive_rehash_string(void) { rehash_string(untag_string(dpop())); } /* untagged */ F_STRING *allot_string(F_FIXNUM capacity, CELL fill) { CELL i; F_STRING* string = allot_string_internal(capacity); for(i = 0; i < capacity; i++) cput(SREF(string,i),fill); rehash_string(string); return string; } void primitive_string(void) { CELL initial = unbox_unsigned_cell(); F_FIXNUM length = unbox_signed_cell(); dpush(tag_object(allot_string(length,initial))); } F_STRING* reallot_string(F_STRING* string, F_FIXNUM capacity, u16 fill) { /* later on, do an optimization: if end of array is here, just grow */ CELL i; CELL to_copy = string_capacity(string); if(capacity < to_copy) to_copy = capacity; REGISTER_STRING(string); F_STRING *new_string = allot_string_internal(capacity); UNREGISTER_STRING(string); memcpy(new_string + 1,string + 1,to_copy * CHARS); for(i = to_copy; i < capacity; i++) cput(SREF(new_string,i),fill); return new_string; } void primitive_resize_string(void) { F_STRING* string = untag_string_fast(dpop()); F_FIXNUM capacity = unbox_signed_cell(); dpush(tag_object(reallot_string(string,capacity,0))); } /* Some ugly macros to prevent a 2x code duplication */ #define MEMORY_TO_STRING(type,utype) \ F_STRING *memory_to_##type##_string(const type *string, CELL length) \ { \ F_STRING* s = allot_string_internal(length); \ CELL i; \ for(i = 0; i < length; i++) \ { \ cput(SREF(s,i),(utype)*string); \ string++; \ } \ rehash_string(s); \ return s; \ } \ void primitive_memory_to_##type##_string(void) \ { \ CELL length = unbox_unsigned_cell(); \ type *string = (type*)unbox_unsigned_cell(); \ dpush(tag_object(memory_to_##type##_string(string,length))); \ } \ F_STRING *from_##type##_string(const type *str) \ { \ CELL length = 0; \ type *scan = str; \ while(*scan++) length++; \ return memory_to_##type##_string((type*)str,length); \ } \ void box_##type##_string(const type *str) \ { \ dpush(str ? tag_object(from_##type##_string(str)) : F); \ } \ void primitive_alien_to_##type##_string(void) \ { \ drepl(tag_object(from_##type##_string(alien_offset(dpeek())))); \ } MEMORY_TO_STRING(char,u8) MEMORY_TO_STRING(u16,u16) bool check_string(F_STRING *s, CELL max) { CELL capacity = string_capacity(s); CELL i; for(i = 0; i < capacity; i++) { u16 ch = string_nth(s,i); if(ch == '\0' || ch >= (1 << (max * 8))) return false; } return true; } F_ARRAY *allot_c_string(CELL capacity, CELL size) { return allot_array_internal(BYTE_ARRAY_TYPE,capacity * size / CELLS + 1); } #define STRING_TO_MEMORY(type) \ void type##_string_to_memory(F_STRING *s, type *string) \ { \ CELL i; \ CELL capacity = string_capacity(s); \ for(i = 0; i < capacity; i++) \ string[i] = string_nth(s,i); \ } \ void primitive_##type##_string_to_memory(void) \ { \ type *address = (type*)unbox_unsigned_cell(); \ F_STRING *str = untag_string(dpop()); \ type##_string_to_memory(str,address); \ } \ F_ARRAY *string_to_##type##_alien(F_STRING *s, bool check) \ { \ CELL capacity = string_capacity(s); \ F_ARRAY *_c_str; \ if(check && !check_string(s,sizeof(type))) \ general_error(ERROR_C_STRING,tag_object(s),F,true); \ _c_str = allot_c_string(capacity,sizeof(type)); \ type *c_str = (type*)(_c_str + 1); \ type##_string_to_memory(s,c_str); \ c_str[capacity] = 0; \ return _c_str; \ } \ type *to_##type##_string(F_STRING *s, bool check) \ { \ if(sizeof(type) == sizeof(u16)) \ { \ if(check && !check_string(s,sizeof(type))) \ general_error(ERROR_C_STRING,tag_object(s),F,true); \ return (type*)(s + 1); \ } \ else \ return (type*)(string_to_##type##_alien(s,check) + 1); \ } \ type *unbox_##type##_string(void) \ { \ return to_##type##_string(untag_string(dpop()),true); \ } \ void primitive_string_to_##type##_alien(void) \ { \ CELL string, t; \ string = dpeek(); \ t = type_of(string); \ if(t != ALIEN_TYPE && t != BYTE_ARRAY_TYPE && t != F_TYPE) \ drepl(tag_object(string_to_##type##_alien(untag_string(string),true))); \ } STRING_TO_MEMORY(char); STRING_TO_MEMORY(u16); void primitive_char_slot(void) { F_STRING* string = untag_string_fast(dpop()); CELL index = untag_fixnum_fast(dpop()); dpush(tag_fixnum(string_nth(string,index))); } void primitive_set_char_slot(void) { F_STRING* string = untag_string_fast(dpop()); CELL index = untag_fixnum_fast(dpop()); CELL value = untag_fixnum_fast(dpop()); set_string_nth(string,index,value); } void primitive_string_to_sbuf(void) { F_SBUF *sbuf = allot_object(SBUF_TYPE,sizeof(F_SBUF)); F_STRING *string = untag_string(dpeek()); sbuf->top = string->length; sbuf->string = tag_object(string); drepl(tag_object(sbuf)); } void primitive_hashtable(void) { F_HASHTABLE* hash = allot_object(HASHTABLE_TYPE,sizeof(F_HASHTABLE)); hash->count = F; hash->deleted = F; hash->array = F; dpush(tag_object(hash)); } void update_xt(F_WORD* word) { word->compiledp = F; word->xt = primitive_to_xt(to_fixnum(word->primitive)); } /* ( name vocabulary -- word ) */ void primitive_word(void) { F_WORD *word = allot_object(WORD_TYPE,sizeof(F_WORD)); word->hashcode = tag_fixnum(rand()); word->vocabulary = dpop(); word->name = dpop(); word->primitive = tag_fixnum(0); word->def = F; word->props = F; update_xt(word); dpush(tag_word(word)); } void primitive_update_xt(void) { update_xt(untag_word(dpop())); } void primitive_word_xt(void) { F_WORD *word = untag_word(dpeek()); drepl(allot_cell(word->xt)); } void fixup_word(F_WORD* word) { /* If this is a compiled word, relocate the code pointer. Otherwise, reset it based on the primitive number of the word. */ if(word->compiledp != F) code_fixup(&word->xt); else update_xt(word); } void primitive_wrapper(void) { F_WRAPPER *wrapper = allot_object(WRAPPER_TYPE,sizeof(F_WRAPPER)); wrapper->object = dpeek(); drepl(tag_wrapper(wrapper)); }