namespace factor { template struct free_list_allocator { cell size; cell start; cell end; free_list free_blocks; mark_bits state; explicit free_list_allocator(cell size, cell start); void initial_free_list(cell occupied); bool contains_p(Block *block); Block *first_block(); Block *last_block(); Block *next_block_after(Block *block); Block *next_allocated_block_after(Block *block); bool can_allot_p(cell size); Block *allot(cell size); void free(Block *block); cell occupied_space(); cell free_space(); cell largest_free_block(); cell free_block_count(); void sweep(); template void sweep(Iterator &iter); template void compact(Iterator &iter, Fixup fixup, const Block **finger); template void iterate(Iterator &iter, Fixup fixup); template void iterate(Iterator &iter); }; template free_list_allocator::free_list_allocator(cell size_, cell start_) : size(size_), start(start_), end(start_ + size_), state(mark_bits(size_,start_)) { initial_free_list(0); } template void free_list_allocator::initial_free_list(cell occupied) { free_blocks.initial_free_list(start,end,occupied); } template bool free_list_allocator::contains_p(Block *block) { return ((cell)block - start) < size; } template Block *free_list_allocator::first_block() { return (Block *)start; } template Block *free_list_allocator::last_block() { return (Block *)end; } template Block *free_list_allocator::next_block_after(Block *block) { return (Block *)((cell)block + block->size()); } template Block *free_list_allocator::next_allocated_block_after(Block *block) { while(block != this->last_block() && block->free_p()) { free_heap_block *free_block = (free_heap_block *)block; block = (object *)((cell)free_block + free_block->size()); } if(block == this->last_block()) return NULL; else return block; } template bool free_list_allocator::can_allot_p(cell size) { return free_blocks.can_allot_p(size); } template Block *free_list_allocator::allot(cell size) { size = align(size,data_alignment); free_heap_block *block = free_blocks.find_free_block(size); if(block) { block = free_blocks.split_free_block(block,size); return (Block *)block; } else return NULL; } template void free_list_allocator::free(Block *block) { free_heap_block *free_block = (free_heap_block *)block; free_block->make_free(block->size()); free_blocks.add_to_free_list(free_block); } template cell free_list_allocator::free_space() { return free_blocks.free_space; } template cell free_list_allocator::occupied_space() { return size - free_blocks.free_space; } template cell free_list_allocator::largest_free_block() { return free_blocks.largest_free_block(); } template cell free_list_allocator::free_block_count() { return free_blocks.free_block_count; } template template void free_list_allocator::sweep(Iterator &iter) { free_blocks.clear_free_list(); Block *start = this->first_block(); Block *end = this->last_block(); while(start != end) { /* find next unmarked block */ start = state.next_unmarked_block_after(start); if(start != end) { /* find size */ cell size = state.unmarked_block_size(start); FACTOR_ASSERT(size > 0); free_heap_block *free_block = (free_heap_block *)start; free_block->make_free(size); free_blocks.add_to_free_list(free_block); iter(start, size); start = (Block *)((char *)start + size); } } } template struct null_sweep_iterator { void operator()(Block *free_block, cell size) {} }; template void free_list_allocator::sweep() { null_sweep_iterator none; sweep(none); } template struct heap_compactor { mark_bits *state; char *address; Iterator &iter; const Block **finger; explicit heap_compactor(mark_bits *state_, Block *address_, Iterator &iter_, const Block **finger_) : state(state_), address((char *)address_), iter(iter_), finger(finger_) {} void operator()(Block *block, cell size) { if(this->state->marked_p(block)) { *finger = (Block *)((char *)block + size); memmove((Block *)address,block,size); iter(block,(Block *)address,size); address += size; } } }; /* The forwarding map must be computed first by calling state.compute_forwarding(). */ template template void free_list_allocator::compact(Iterator &iter, Fixup fixup, const Block **finger) { heap_compactor compactor(&state,first_block(),iter,finger); iterate(compactor,fixup); /* Now update the free list; there will be a single free block at the end */ free_blocks.initial_free_list(start,end,(cell)compactor.address - start); } /* During compaction we have to be careful and measure object sizes differently */ template template void free_list_allocator::iterate(Iterator &iter, Fixup fixup) { Block *scan = first_block(); Block *end = last_block(); while(scan != end) { cell size = fixup.size(scan); Block *next = (Block *)((cell)scan + size); if(!scan->free_p()) iter(scan,size); scan = next; } } template template void free_list_allocator::iterate(Iterator &iter) { iterate(iter,no_fixup()); } }