! Copyright (C) 2004, 2010 Slava Pestov. ! Copyright (C) 2008, Doug Coleman. ! See http://factorcode.org/license.txt for BSD license. USING: combinators kernel kernel.private math math.order math.private ; IN: math.integers ] most ; foldable M: integer numerator ; inline M: integer denominator drop 1 ; inline M: integer >fraction 1 ; inline M: fixnum >fixnum ; inline M: fixnum >bignum fixnum>bignum ; inline M: fixnum >integer ; inline M: fixnum >float fixnum>float ; inline M: fixnum integer>fixnum ; inline M: fixnum integer>fixnum-strict ; inline M: fixnum hashcode* nip ; inline M: fixnum equal? over bignum? [ >bignum bignum= ] [ 2drop f ] if ; inline M: fixnum number= eq? ; inline M: fixnum < fixnum< ; inline M: fixnum <= fixnum<= ; inline M: fixnum > fixnum> ; inline M: fixnum >= fixnum>= ; inline M: fixnum u< fixnum< ; inline M: fixnum u<= fixnum<= ; inline M: fixnum u> fixnum> ; inline M: fixnum u>= fixnum>= ; inline M: fixnum min over fixnum? [ fixnum-min ] [ call-next-method ] if ; inline M: fixnum max over fixnum? [ fixnum-max ] [ call-next-method ] if ; inline M: fixnum + fixnum+ ; inline M: fixnum - fixnum- ; inline M: fixnum * fixnum* ; inline M: fixnum /i fixnum/i ; inline M: fixnum mod fixnum-mod ; inline M: fixnum /mod fixnum/mod ; inline M: fixnum bitand fixnum-bitand ; inline M: fixnum bitor fixnum-bitor ; inline M: fixnum bitxor fixnum-bitxor ; inline M: fixnum shift integer>fixnum fixnum-shift ; inline M: fixnum bitnot fixnum-bitnot ; inline : fixnum-bit? ( x n -- ? ) { fixnum fixnum } declare dup 0 >= [ neg shift even? not ] [ 2drop f ] if ; M: fixnum bit? integer>fixnum-strict fixnum-bit? ; inline : fixnum-log2 ( x -- n ) { fixnum } declare 0 swap [ dup 1 eq? ] [ [ 1 fixnum+fast ] [ 2/ ] bi* ] until drop ; M: fixnum (log2) fixnum-log2 { fixnum } declare ; inline M: bignum >fixnum bignum>fixnum ; inline M: bignum >bignum ; inline M: bignum integer>fixnum bignum>fixnum ; inline M: bignum integer>fixnum-strict bignum>fixnum-strict ; inline M: bignum hashcode* nip bignum>fixnum ; M: bignum equal? over bignum? [ bignum= ] [ swap dup fixnum? [ >bignum bignum= ] [ 2drop f ] if ] if ; inline M: bignum number= bignum= ; inline M: bignum < bignum< ; inline M: bignum <= bignum<= ; inline M: bignum > bignum> ; inline M: bignum >= bignum>= ; inline M: bignum u< bignum< ; inline M: bignum u<= bignum<= ; inline M: bignum u> bignum> ; inline M: bignum u>= bignum>= ; inline M: bignum + bignum+ ; inline M: bignum - bignum- ; inline M: bignum * bignum* ; inline M: bignum /i bignum/i ; inline M: bignum mod bignum-mod ; inline M: bignum /mod bignum/mod ; inline M: bignum bitand bignum-bitand ; inline M: bignum bitor bignum-bitor ; inline M: bignum bitxor bignum-bitxor ; inline M: bignum shift integer>fixnum bignum-shift ; inline M: bignum bitnot bignum-bitnot ; inline M: bignum bit? bignum-bit? ; inline M: bignum (log2) bignum-log2 ; inline ! Converting ratios to floats. Based on FLOAT-RATIO from ! sbcl/src/code/float.lisp, which has the following license: ! "The software is in the public domain and is ! provided with absolutely no warranty." ! First step: pre-scaling ! As an optimization to minimize the size of the operands of the bignum ! divisions we will do, we start by stripping any trailing zeros from ! the denominator and move it into the scale factor. ! We want a result in ]2^54;2^53] to find the mantissa ! in ]2^53,2^52] with 1 extra "guard" bit for rounding. ! So we shift the numerator to get the result of the integer division ! "num/den" in the range ]2^54; 2^53]; Our shift is only a guess ! based on the magnitude of the inputs, so it ! will actually give results in the range ]2^55; 2^53]. ! Note: epsilon is used for rounding in step 3. : twos ( x -- y ) dup 1 - bitxor log2 ; inline : scale-denonimator ( den -- scaled-den scale' ) dup twos neg [ shift ] keep ; inline : (epsilon?) ( num shift -- ? ) dup neg? [ neg 2^ 1 - bitand zero? not ] [ 2drop f ] if ; inline : scale-numerator ( num den -- epsilon? num' scale ) over [ log2 ] bi@ - [ 54 + [ (epsilon?) ] [ shift ] 2bi ] keep ; inline : pre-scale ( num den -- epsilon? num' den' scale ) scale-denonimator [ [ scale-numerator ] keep swap ] dip swap - ; inline ! Second step: compute mantissa ! "num/den" would be in the range ]2^55; 2^53]. After this step ! it will be in the range ]2^54; 2^53]. Compute "num/den" and the ! reminder used for rounding : (2/-with-epsilon) ( epsilon? num -- epsilon?' num' ) [ 1 bitand zero? not or ] [ 2/ ] bi ; inline : mantissa-and-guard ( epsilon? num den scale -- epsilon?' mantissa-and-guard rem scale' ) 2over /i log2 53 > [ [ (2/-with-epsilon) ] [ ] [ 1 + ] tri* ] when [ /mod ] dip ; inline ! Third step: rounding ! ! if the guard bit is 0, round down ! else if the guard bit is 1 and (rem != 0 or epsilon is true), round up ! else break the tie by alternating rounding down or up to avoid accumulating errors ! ! The epsilon trick works because epsilon is true if numerator bits were discarded. ! Mathematically, (num+epsilon)/denom = (num/denum) + (epsilon/denom) ! We have actually computed the "num/denum" part and use the "epsilon/denom" ! to choose the correct rounding. ! ! Note that rounding down means doing nothing because we will ! discard the guard bit after this : round-to-nearest ( epsilon? mantissa-and-guard rem -- mantissa-and-guard' ) over odd? [ zero? [ dup 2 bitand zero? not rot or [ 1 + ] when ] [ nip 1 + ] if ] [ drop nip ] if ; inline ! Fourth step: post-scaling ! Because of rounding, our mantissa with guard bit is now in the ! range [2^54;2^53], so we have to handle 2^54 specially. : scale-float ( mantissa scale -- float' ) ! At this point, the scale value is the exponent minus 1. { { [ dup 1024 > ] [ 2drop 1/0. ] } { [ dup -1021 < ] [ 1021 + shift bits>double ] } ! subnormals and underflow [ [ 52 2^ 1 - bitand ] dip 1022 + 52 shift bitor bits>double ] } cond ; inline : post-scale ( mantissa scale -- n ) [ 2/ ] dip ! drop guard bit over 53 2^ = [ [ 2/ ] [ 1 + ] bi* ] when scale-float ; inline ! Main word : /f-abs ( m n -- f ) over zero? [ nip zero? 0/0. 0.0 ? ] [ [ drop 1/0. ] [ pre-scale mantissa-and-guard [ round-to-nearest ] dip post-scale ] if-zero ] if ; inline : bignum/f ( m n -- f ) [ [ abs ] bi@ /f-abs ] [ [ 0 < ] bi@ xor ] 2bi [ neg ] when ; inline M: bignum /f ( m n -- f ) { bignum bignum } declare bignum/f ; CONSTANT: bignum/f-threshold 0x20,0000,0000,0000 : fixnum/f ( m n -- m/n ) [ >float ] bi@ float/f ; inline M: fixnum /f { fixnum fixnum } declare 2dup [ abs bignum/f-threshold >= ] either? [ bignum/f ] [ fixnum/f ] if ; inline : bignum>float ( bignum -- float ) { bignum } declare 1 >bignum bignum/f ; M: bignum >float bignum>float ; inline PRIVATE>