#include "master.hpp" namespace factor { void factor_vm::init_inline_caching(int max_size) { max_pic_size = max_size; } void factor_vm::deallocate_inline_cache(cell return_address) { /* Find the call target. */ void* old_entry_point = get_call_target(return_address); code_block* old_block = (code_block*)old_entry_point - 1; /* Free the old PIC since we know its unreachable */ if (old_block->pic_p()) code->free(old_block); } /* Figure out what kind of type check the PIC needs based on the methods it contains */ cell factor_vm::determine_inline_cache_type(array* cache_entries) { bool seen_tuple = false; cell i; for (i = 0; i < array_capacity(cache_entries); i += 2) { /* Is it a tuple layout? */ if (TAG(array_nth(cache_entries, i)) == ARRAY_TYPE) { seen_tuple = true; break; } } return seen_tuple ? PIC_TUPLE : PIC_TAG; } void factor_vm::update_pic_count(cell type) { if (type == PIC_TAG) dispatch_stats.pic_tag_count++; else dispatch_stats.pic_tuple_count++; } struct inline_cache_jit : public jit { fixnum index; inline_cache_jit(cell generic_word, factor_vm* vm) : jit(code_block_pic, generic_word, vm) {} ; void emit_check(cell klass); void compile_inline_cache(fixnum index, cell generic_word_, cell methods_, cell cache_entries_, bool tail_call_p); }; /* Allocates memory */ void inline_cache_jit::emit_check(cell klass) { cell code_template; if (TAG(klass) == FIXNUM_TYPE) code_template = parent->special_objects[PIC_CHECK_TAG]; else code_template = parent->special_objects[PIC_CHECK_TUPLE]; emit_with_literal(code_template, klass); } /* index: 0 = top of stack, 1 = item underneath, etc cache_entries: array of class/method pairs */ /* Allocates memory */ void inline_cache_jit::compile_inline_cache(fixnum index, cell generic_word_, cell methods_, cell cache_entries_, bool tail_call_p) { data_root generic_word(generic_word_, parent); data_root methods(methods_, parent); data_root cache_entries(cache_entries_, parent); cell inline_cache_type = parent->determine_inline_cache_type(cache_entries.untagged()); parent->update_pic_count(inline_cache_type); /* Generate machine code to determine the object's class. */ emit_with_literal(parent->special_objects[PIC_LOAD], tag_fixnum(-index * sizeof(cell))); emit(parent->special_objects[inline_cache_type]); /* Generate machine code to check, in turn, if the class is one of the cached * entries. */ cell i; for (i = 0; i < array_capacity(cache_entries.untagged()); i += 2) { /* Class equal? */ cell klass = array_nth(cache_entries.untagged(), i); emit_check(klass); /* Yes? Jump to method */ cell method = array_nth(cache_entries.untagged(), i + 1); emit_with_literal(parent->special_objects[PIC_HIT], method); } /* If none of the above conditionals tested true, then execution "falls through" to here. */ /* A stack frame is set up, since the inline-cache-miss sub-primitive makes a subroutine call to the VM. */ emit(parent->special_objects[JIT_PROLOG]); /* The inline-cache-miss sub-primitive call receives enough information to reconstruct the PIC with the new entry. */ push(generic_word.value()); push(methods.value()); push(tag_fixnum(index)); push(cache_entries.value()); emit_subprimitive( parent->special_objects[tail_call_p ? PIC_MISS_TAIL_WORD : PIC_MISS_WORD], true, /* tail_call_p */ true); /* stack_frame_p */ } /* Allocates memory */ code_block* factor_vm::compile_inline_cache(fixnum index, cell generic_word_, cell methods_, cell cache_entries_, bool tail_call_p) { data_root generic_word(generic_word_, this); data_root methods(methods_, this); data_root cache_entries(cache_entries_, this); inline_cache_jit jit(generic_word.value(), this); jit.compile_inline_cache(index, generic_word.value(), methods.value(), cache_entries.value(), tail_call_p); code_block* code = jit.to_code_block(JIT_FRAME_SIZE); initialize_code_block(code); return code; } cell factor_vm::inline_cache_size(cell cache_entries) { return array_capacity(untag_check(cache_entries)) / 2; } /* Allocates memory */ cell factor_vm::add_inline_cache_entry(cell cache_entries_, cell klass_, cell method_) { data_root cache_entries(cache_entries_, this); data_root klass(klass_, this); data_root method(method_, this); cell pic_size = array_capacity(cache_entries.untagged()); data_root new_cache_entries( reallot_array(cache_entries.untagged(), pic_size + 2), this); set_array_nth(new_cache_entries.untagged(), pic_size, klass.value()); set_array_nth(new_cache_entries.untagged(), pic_size + 1, method.value()); return new_cache_entries.value(); } void factor_vm::update_pic_transitions(cell pic_size) { if (pic_size == max_pic_size) dispatch_stats.pic_to_mega_transitions++; else if (pic_size == 0) dispatch_stats.cold_call_to_ic_transitions++; else if (pic_size == 1) dispatch_stats.ic_to_pic_transitions++; } /* The cache_entries parameter is empty (on cold call site) or has entries (on cache miss). Called from assembly with the actual return address. Compilation of the inline cache may trigger a GC, which may trigger a compaction; also, the block containing the return address may now be dead. Use a code_root to take care of the details. */ /* Allocates memory */ cell factor_vm::inline_cache_miss(cell return_address_) { code_root return_address(return_address_, this); bool tail_call_site = tail_call_site_p(return_address.value); #ifdef PIC_DEBUG std::cout << "Inline cache miss at " << (tail_call_site ? "tail" : "non-tail") << " call site 0x" << std::hex << return_address.value << std::dec << std::endl; print_callstack(); #endif data_root cache_entries(ctx->pop(), this); fixnum index = untag_fixnum(ctx->pop()); data_root methods(ctx->pop(), this); data_root generic_word(ctx->pop(), this); data_root object(((cell*)ctx->datastack)[-index], this); cell pic_size = inline_cache_size(cache_entries.value()); update_pic_transitions(pic_size); cell xt; if (pic_size >= max_pic_size) xt = generic_word->entry_point; else { cell klass = object_class(object.value()); cell method = lookup_method(object.value(), methods.value()); data_root new_cache_entries( add_inline_cache_entry(cache_entries.value(), klass, method), this); xt = compile_inline_cache(index, generic_word.value(), methods.value(), new_cache_entries.value(), tail_call_site) ->entry_point(); } /* Install the new stub. */ if (return_address.valid) { /* Since each PIC is only referenced from a single call site, if the old call target was a PIC, we can deallocate it immediately, instead of leaving dead PICs around until the next GC. */ deallocate_inline_cache(return_address.value); set_call_target(return_address.value, xt); #ifdef PIC_DEBUG std::cout << "Updated " << (tail_call_site ? "tail" : "non-tail") << " call site 0x" << std::hex << return_address.value << std::dec << " with 0x" << std::hex << (cell)xt << std::dec << std::endl; print_callstack(); #endif } return xt; } /* Allocates memory */ VM_C_API cell inline_cache_miss(cell return_address, factor_vm* parent) { return parent->inline_cache_miss(return_address); } }