USING: combinators combinators.lib io locals kernel math math.functions math.ranges namespaces random sequences hashtables sets ; IN: math.miller-rabin : >even ( n -- int ) dup even? [ 1- ] unless ; foldable : >odd ( n -- int ) dup even? [ 1+ ] when ; foldable : next-odd ( m -- n ) dup even? [ 1+ ] [ 2 + ] if ; TUPLE: positive-even-expected n ; : (factor-2s) ( r s -- r s ) dup even? [ -1 shift >r 1+ r> (factor-2s) ] when ; : factor-2s ( n -- r s ) #! factor an integer into s * 2^r 0 swap (factor-2s) ; :: (miller-rabin) ( n trials -- ? ) [let | r [ n 1- factor-2s drop ] s [ n 1- factor-2s nip ] prime?! [ t ] a! [ 0 ] count! [ 0 ] | trials [ n 1- [1,b] random a! a s n ^mod 1 = [ 0 count! r [ 2^ s * a swap n ^mod n - -1 = [ count 1+ count! r + ] when ] each count zero? [ f prime?! trials + ] when ] unless drop ] each prime? ] ; : miller-rabin* ( n numtrials -- ? ) over { { [ dup 1 <= ] [ 3drop f ] } { [ dup 2 = ] [ 3drop t ] } { [ dup even? ] [ 3drop f ] } [ [ drop (miller-rabin) ] with-scope ] } cond ; : miller-rabin ( n -- ? ) 10 miller-rabin* ; : next-prime ( n -- p ) next-odd dup miller-rabin [ next-prime ] unless ; : random-prime ( numbits -- p ) random-bits next-prime ; ERROR: no-relative-prime n ; : (find-relative-prime) ( n guess -- p ) over 1 <= [ over no-relative-prime ] when dup 1 <= [ drop 3 ] when 2dup gcd nip 1 > [ 2 + (find-relative-prime) ] [ nip ] if ; : find-relative-prime* ( n guess -- p ) #! find a prime relative to n with initial guess >odd (find-relative-prime) ; : find-relative-prime ( n -- p ) dup random find-relative-prime* ; ERROR: too-few-primes ; : unique-primes ( numbits n -- seq ) #! generate two primes over 5 < [ too-few-primes ] when [ [ drop random-prime ] with map ] [ all-unique? ] generate ;